Abstract

Supercritical carbon dioxide (sCO2) power cycles show promising potential of higher plant efficiencies and power densities for a wide range of power generation applications such as fossil fuel power plants, nuclear power production, solar power, and geothermal power generation. sCO2 leakage through the turbomachinery has been one of the main concerns in such applications. To offer a potential solution, we propose an elastohydrodynamic (EHD) seal that can work at elevated pressures and temperatures with low leakage and minimal wear. The EHD seal has a very simple, sleeve-like structure, wrapping on the rotor with minimal initial clearance at micron levels. In this work, a proof-of-concept study for the proposed EHD seal was presented by using the simplified Reynolds equation and Lame’s formula for the fluid flow in the clearance and for seal deformation, respectively. The set of nonlinear equations was solved by using both the conventional Prediction–Correction (PC) method and modern Physics-Informed Neural Network (PINN). It was shown that the physics-informed deep learning method provided good computational efficiency in resolving the steep pressure gradient in the clearance with good accuracy. The results showed that the leakage rates increased quadratically with working pressures and reached a steady-state at high-pressure values of 15∼20 MPa, where Q = 300 g/s at 20 MPa for an initial seal clearance of 255 μm. This indicates that the EHD seal could be tailored to become a potential solution to minimize the sCO2 discharge in power plants.

References

1.
Xu
,
H. P.
,
Wong
,
P. L.
, and
Zhang
,
Z. M.
,
1999
, “
An EHL Analysis of an All-Metal Viscoelastic High-Pressure Seal
,”
ASME J. Tribol.
,
121
(
4
), pp.
916
920
.
2.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
, p.
116447
.
3.
You
,
D.
, and
Metghalchi
,
H.
,
2021
, “
On the Supercritical Carbon Dioxide Recompression Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p. 121701.
4.
Gentile
,
R.
,
Vesely
,
L.
,
Ghouse
,
J. H.
,
Goyal
,
V.
, and
Kapat
,
J. S.
,
2023
, “
Transient Analysis of a Supercritical Carbon Dioxide Air Cooler Using IDAES
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p. 022104.
5.
Seshadri
,
L.
,
Kumar
,
P.
,
Nassar
,
A.
, and
Giri
,
G.
,
2022
, “
Analysis of Turbomachinery Losses in sCO2 Brayton Power Blocks
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p. 112101.
6.
Noaman
,
M.
,
Awad
,
O.
,
Morosuk
,
T.
,
Tsatsaronis
,
G.
, and
Salomo
,
S.
,
2022
, “
Identifying the Market Scenarios for Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p. 050906.
7.
Romei
,
A.
,
Gaetani
,
P.
,
Giostri
,
A.
, and
Persico
,
G.
,
2020
, “
The Role of Turbomachinery Performance in the Optimization of Supercritical Carbon Dioxide Power Systems
,”
ASME J. Turbomach
,
142
(
7
), p. 071001.
8.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Analysis of the Thermodynamic Potential of Supercritical Carbon Dioxide Cycles: A Systematic Approach
,”
ASME. J. Eng. Gas Turbines Power
,
140
(
5
), p.
051701
.
9.
S. A.
Wright
,
P. S.
Pickard
,
R.
Fuller
,
R. F.
Radel
, and
M. E.
Vernon
,
2009
Supercritical CO2 Brayton Cycle Power Generation Development Program and Initial Test Results
,”
Proceedings of the ASME Power Conference
,
Albuquerque, NM
,
July 21–23
, pp.
573
583
.
10.
Nami
,
H.
,
Mahmoudi
,
S. M. S.
, and
Nemati
,
A.
,
2017
, “
Exergy, Economic and Environmental Impact Assessment and Optimization of a Novel Cogeneration System Including a Gas Turbine, a Supercritical CO2 and an Organic Rankine Cycle (GT-HRSG/SCO2)
,”
Appl. Therm. Eng.
,
110
, pp.
1315
1330
.
11.
Song
,
J.
,
Li
,
X.
,
Ren
,
X.
, and
Gu
,
C.
,
2018
, “
Performance Analysis and Parametric Optimization of Supercritical Carbon Dioxide (S-CO2) Cycle With Bottoming Organic Rankine Cycle (ORC)
,”
Energy
,
143
, pp.
406
416
.
12.
Ho
,
C. K.
,
Carlson
,
M.
,
Garg
,
P.
, and
Kumar
,
P.
,
2016
, “
Technoeconomic Analysis of Alternative Solarized s-CO2 Brayton Cycle Configurations
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051008
.
13.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propuls. Power
,
22
(
2
), pp.
313
349
.
14.
Steinetz
,
B. M.
, and
Hendricks
,
R.
,
2013
, “
Engine Seal Technology Requirements to Meet Nasa’s Advanced Subsonic Technology Program Goals
,”
J. Chem. Inf. Model
,
53
(
9
), pp.
1689
1699
.
15.
Pena de Souza Barros
,
G.
,
Barreira Martinez
,
C.
,
Viana
,
E. M. d. F.
,
Augusto Goulart Diniz
,
H.
, and
Moreira Duarte
,
W.
,
2019
, “
Labyrinth Seals—A Literature Review
,” http://dx.doi.org//10.26678/abcm.encit2018.cit18-0775
16.
Kim
,
M. S.
,
Bae
,
S. J.
,
Son
,
S.
,
Oh
,
B. S.
, and
Lee
,
J. I.
,
2019
, “
Study of Critical Flow for Supercritical CO2 Seal
,”
Int. J. Heat Mass Transf.
,
138
, pp.
85
95
.
17.
Wu
,
T.
, and
San Andrés
,
L.
,
2019
, “
Gas Labyrinth Seals: On the Effect of Clearance and Operating Conditions on Wall Friction Factors—A CFD Investigation
,”
Tribol. Int
,
131
(
October 2018
), pp.
363
376
.
18.
Bidkar
,
R. A.
,
Sevincer
,
E.
,
Wang
,
J.
,
Thatte
,
A. M.
,
Mann
,
A.
,
Peter
,
M.
,
Musgrove
,
G.
,
Allison
,
T.
, and
Moore
,
J.
,
2017
, “
Low-Leakage Shaft-End Seals for Utility-Scale Supercritical CO2 Turboexpanders
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p. 022503.
19.
Proestler
,
S.
,
2002
, “
CFD Modeling of Brush Seals
,”
Proceedings of the European CFX Conference
, Vol. 16, p.
18
.
20.
Wang
,
X.
,
Liu
,
M.
,
Kao-Walter
,
S.
, and
Hu
,
X.
,
2020
, “
Numerical Evaluation of Rotordynamic Coefficients for Compliant Foil Gas Seal
,”
Appl. Sci.
,
10
(
11
), p.
3828
.
21.
Heshmat
,
H.
,
Hunsberger
,
A.
,
Ren
,
Z.
,
Jahanmir
,
S.
, and
Walton
,
J. F.
,
2013
, “
Oil-Free Bearings and Seals for Centrifugal Hydrogen Compressor
,”
Tribol. Online
,
8
(
1
), pp.
44
63
.
22.
Hou
,
G.
,
Su
,
H.
,
Chen
,
G.
, and
Tian
,
Y.
,
2020
, “
Performance Analysis of Compliant Cylindrical Intershaft Seal
,”
Sci. Prog.
,
103
(
3
), pp.
1
24
.
23.
Heshmat
,
J. L. C. H.
, and
Walton
,
J.
,
2018
, “
Technology Readiness of 5th and 6th Generation Compliant Foil Bearing for 10 MWE S-CO2 Turbomachinery Systems
,” Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium,
Pittsburgh, PA
,
Mar. 27–29
, pp.
1
29
.
24.
Zhao
,
H.
,
Su
,
H.
, and
Chen
,
G.
,
2020
, “
Analysis of Total Leakage of Finger Seal with Side Leakage Flow
,”
Tribol. Int.
,
150
, p.
106371
.
25.
Su
,
H.
,
Rahmani
,
R.
, and
Rahnejat
,
H.
,
2017
, “
Performance Evaluation of Bidirectional Dry Gas Seals With Special Groove Geometry
,”
Tribol. Trans.
,
60
(
1
), pp.
58
69
.
26.
Rozova
,
L.
, and
Martynenko
,
G.
,
2020
, “
Information Technology in the Modeling of Dry Gas Seal for Centrifugal Compressors
,”
CEUR Workshop Proc.
,
2608
, pp.
536
546
.
27.
Conry
,
T. F.
,
Wang
,
S.
, and
Cusano
,
C.
,
1987
, “
A Reynolds-Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
ASME J. Tribol.
,
109
(
4
), pp.
648
654
.
28.
Paulson
,
N. R.
,
Sadeghi
,
F.
, and
Habchi
,
W.
,
2017
, “
A Coupled Finite Element EHL and Continuum Damage Mechanics Model for Rolling Contact Fatigue
,”
Tribol. Int.
,
107
, pp.
173
183
.
29.
Peterson
,
W.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Berhan
,
M. T.
,
2020
, “
A Strongly Coupled Finite Difference Method–Finite Element Method Model for Two-Dimensional Elastohydrodynamically Lubricated Contact
,”
ASME J. Tribol.
,
142
(
5
), p. 051601.
30.
Feldermann
,
A.
,
Neumann
,
S.
, and
Jacobs
,
G.
,
2017
, “
CFD Simulation of Elastohydrodynamic Lubrication Problems With Reduced Order Models for Fluid–Structure Interaction
,”
Tribol.—Mater. Surfaces Interfaces
,
11
(
1
), pp.
30
38
.
31.
Lohner
,
T.
,
Ziegltrum
,
A.
,
Stemplinger
,
J. P.
, and
Stahl
,
K.
,
2016
, “
Engineering Software Solution for Thermal Elastohydrodynamic Lubrication Using Multiphysics Software
,”
Adv. Tribol.
,
2016
, pp.
1
13
.
32.
Cao
,
H.
,
Zhang
,
W.
,
Yin
,
L.
, and
Yang
,
L.
,
2022
, “
Numerical Study of Leakage and Rotordynamic Performance of Staggered Labyrinth Seals Working with Supercritical Carbon Dioxide
,”
Shock Vib.
,
2022
, pp.
1
17
.
33.
Hylla
,
E.
,
Schildhauer
,
M.
,
Büssow
,
R.
,
Metz
,
K.
, and
Klawes
,
R.
,
2015
, “
Investigations on Transonic Flow of Super-Critical CO2 Through Carbon Ring Seals
,”
Turbo Expo: Power for Land, Sea, and Air
,
vol. 56802, American Society of Mechanical Engineers, Paper No. GT2015-42486, V009T36A004, 1–13
.
34.
Zhu
,
Y.
,
Jiang
,
Y.
,
Liang
,
S.
,
Guo
,
C.
,
Guo
,
Y.
, and
Cai
,
H.
,
2020
, “
One-Dimensional Computation Method of Supercritical CO2 Labyrinth Seal
,”
Appl. Sci
,
10
(
17
), p.
5771
.
35.
Fairuz
,
Z. M.
, and
Jahn
,
I.
,
2016
, “
The Influence of Real Gas Effects on the Performance of Supercritical CO2 Dry Gas Seals
,”
Tribol. Int
,
102
, pp.
333
347
.
36.
Laxander
,
A.
,
Fesl
,
A.
, and
Hellmig
,
B.
,
2019
, “
Development and Testing of Dry Gas Seals for Turbomachinery in Multiphase CO2 Applications
,”
Proceedings of the 3rd European Supercritical CO2 Conference
. pp.
1
11
.
37.
Chen
,
Y.
,
Peng
,
X.
,
Jiang
,
J.
,
Meng
,
X.
, and
Li
,
J.
,
2018
, “
Experimental and Theoretical Studies of the Dynamic Behavior of a Spiral-Groove Dry Gas Seal at High-Speeds
,”
Tribol. Int.
,
125
, pp.
17
26
.
38.
Yuan
,
T.
,
Li
,
Z.
,
Li
,
J.
, and
Yuan
,
Q.
,
2023
, “
Static and Rotordynamic Characteristics for SCO2 Spiral Groove Dry Gas Seal With the Tilted Seal Ring
,”
ASME J. Eng. Gas Turbines Power
.
145
(
1
), p.
011011
.
39.
Rimpel
,
A.
, et al
,
2018
, “
Test Rig Design for Large Supercritical CO2 Turbine Seals
,” Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium,
Pittsburgh, PA
,
Mar. 27–29
, pp.
1
14
.
40.
Deepak Trivedi
,
J. M.
,
Bidkar
,
R. A.
, and
Wolfe
,
C. E.
,
2019
, “
Supercritical CO2 Tests For Hydrostatic Film Stiffness In Film Riding Seals
,”
Turbo Expo: Power for Land, Sea, and Air. vol. 58721 ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, American Society of Mechanical Engineers, p. V009T38A018, Paper No. GT2019-90975.
41.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C.
, and
Zheng
,
X.
,
2018
, “
Film-Stiffness Characterization for Supercritical CO2 Film-Riding Seals
,”
Proc. ASME Turbo Expo.
, volume 5B,
Oslo, Norway
, pp.
1
10
.
42.
Cesmeci
,
S.
,
Lyathakula
,
K. R.
,
Hassan
,
M. F.
,
Liu
,
S.
,
Xu
,
H.
, and
Tang
,
J.
,
2022
, “
Analysis of an Elasto-Hydrodynamic Seal by Using the Reynolds Equation
,”
Appl. Sci.
,
12
(
19
), p.
9501
.
43.
Cesmeci
,
S.
,
Ejiogu
,
I.
,
Rahman
,
M. M.
,
Hassan
,
M. F.
,
Xu
,
H.
, and
Tang
,
J.
,
2023
, “
Numerical Modeling of an Elastohydrodynamic Seal Design for Supercritical CO2 Power Cycles
,”
Proceedings of the ASME 2023 Power Conference
.
ASME
, pp.
1
8
.
44.
Islam
,
M. T.
,
Hassan
,
M. F.
,
Lyathakula
,
K. R.
,
Cesmeci
,
S.
,
Xu
,
H.
, and
Tang
,
J.
,
2023
, “
A Design Study of an Elasto-Hydrodynamic Seal for sCO2 Power Cycle by Using Physics Informed Neural Network
,”
Proceedings of the ASME 2023 Power Conference
.
Long Beach, CA
,
Aug. 6–9
ASME
, pp.
1
11
.
45.
Cesmeci
,
S.
,
Hassan
,
R.
,
Hassan
,
M. F.
,
Ejiogu
,
I.
,
DeMond
,
M.
,
Xu
,
H.
, and
Tang
,
J.
,
2021
, “
An Innovative Elasto-Hydrodynamic Seal Concept for Supercritical CO2 Power Cycles
,”
Proceedings of the ASME 2021 Power Conference 2021
. No.
V001T04A002
, pp.
1
10
.
46.
Henry
,
J.
, et al
,
2023
, “
Experimental Analysis of an Elastohydrodynamic Seal for Supercritical Carbon Dioxide Turbomachinery
,”
Proceedings of the ASME 2023 Power Conference
.
Long Beach, CA
:
ASME
, pp.
1
10
.
47.
Lyathakula
,
K. R.
,
Cesmeci
,
S.
,
DeMond
,
M.
,
Xu
,
H.
, and
Tang
,
J.
,
2022
, “
Physics-Informed Deep Learning-Based Modeling of a Novel Elastohydrodynamic Seal for Supercritical CO2 Turbomachinery
,”
ASME Power Conf
,
85826
, p.
V001T15A008
.
48.
Hasan
,
M. W.
,
Cesmeci
,
S.
,
Hassan
,
M. F.
,
Demond
,
M.
, and
Xu
,
H.
,
2023
, “
An Innovative Seal Concept for Aircraft Engines
,”
Proceedings of the ASME 2023 Power Conference
,
Long Beach, CA
,
ASME
.
49.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
Tribol. Trans.
,
54
(
3
), pp.
470
496
.
50.
Yuan
,
T.
,
Li
,
Z.
,
Li
,
J.
, and
Yuan
,
Q.
,
2023
, “
Static and Rotordynamic Characteristics for Supercritical Carbon Dioxide Spiral Groove Dry Gas Seal With the Tilted Seal Ring
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p.
011011
.
51.
Tauviqirrahman
,
M.
,
Jamari
,
J.
,
Susilowati
,
S.
,
Pujiastuti
,
C.
,
Setiyana
,
B.
,
Pasaribu
,
A. H.
, and
Ammarullah
,
M. I.
,
2022
, “
Performance Comparison of Newtonian and Non-Newtonian Fluid on a Heterogeneous Slip/No-Slip Journal Bearing System Based on CFD-FSI Method
,”
Fluids
,
7
(
7
), p.
225
.
52.
Tsai
,
C.-H.
,
Chen
,
H.-T.
,
Wang
,
Y.-N.
,
Lin
,
C.-H.
, and
Fu
,
L.-M.
,
2007
, “
Capabilities and Limitations of 2-Dimensional and 3-Dimensional Numerical Methods in Modeling the Fluid Flow in Sudden Expansion Microchannels
,”
Microfluid. Nanofluidics
,
3
(
1
), pp.
13
18
.
53.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Machine Learning of Linear Differential Equations Using Gaussian Processes
,”
J. Comput. Phys
,
348
, pp.
683
693
.
54.
Lou
,
Q.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Solving Forward and Inverse Flow Problems via the Boltzmann-BGK Formulation
,”
J. Comput. Phys
,
447
, pp.
1
30
.
55.
Kharazmi
,
E.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E. M.
,
2021
, “
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
,”
Comput. Methods Appl. Mech. Eng
,
374
, p.
113547
.
56.
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2021
, “
Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations
,”
CEUR Workshop Proc
,
2964
(
11
).
57.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.
58.
Abadi
,
M.
, et al
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
Proceedings of the 12th USENIX Symposium OPER Systems Design.
, pp.
265
283
.
59.
Pang
,
G.
,
Lu
,
L. U.
, and
Karniadakis
,
G. E. M.
,
2019
, “
fPINNs: Fractional Physics-Informed Neural Networks
,”
SIAM J. Sci. Comput.
,
41
(
4
), pp.
A2603
A2626
.
60.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P. S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
, pp.
56
81
.
61.
Jagtap
,
A. D.
,
Kharazmi
,
E.
, and
Karniadakis
,
G. E.
,
2020
, “
Conservative Physics-Informed Neural Networks on Discrete Domains for Conservation Laws: Applications to Forward and Inverse Problems
,”
Comput. Methods Appl. Mech. Eng.
,
365
, p.
113028
.
62.
Hutchinson
,
R.
,
2008
, “
Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations
,”
Society
,
47
(
6
), pp.
2812
2826
.
63.
Yang
,
Y.
, and
Perdikaris
,
P.
,
2019
, “
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
,”
J. Comput. Phys.
,
394
, pp.
136
152
.
64.
Paszke
,
A.
, et al
,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
Adv. Neural Inf. Process. Syst.
,
32
(
NeurIPS
).
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
65.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Physics Informed Deep Learning (Part II): Data-Driven Discovery of Nonlinear Partial Differential Equations
,” no. Part I,
arxiv
,http://arxiv.org/abs/1711.10566 p.
22
.
66.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
67.
Shukla
,
K.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2021
, “
Parallel Physics-Informed Neural Networks via Domain Decomposition
,”
J. Comput. Phys.
,
447
, p.
110683
.
68.
Sun
,
L.
, and
Wang
,
J. X.
,
2020
, “
Physics-Constrained Bayesian Neural Network for Fluid Flow Reconstruction with Sparse and Noisy Data
,”
Theor. Appl. Mech. Lett.
,
10
(
3
), pp.
161
169
.
69.
Raissi
,
M.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2019
, “
Deep Learning of Vortex-Induced Vibrations
,”
J. Fluid Mech
,
861
, pp.
119
137
.
70.
Jasak
,
H.
, and
Jemcov
,
A.
,
2007
, “
OpenFOAM: A C++ Library for Complex Physics Simulations
,”
Proceedings of the International Workshop on Coupled Methods Numerical Dynamics
, pp.
1
20
.
71.
Yang
,
L.
,
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2021
, “
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems With Noisy Data
,”
J. Comput. Phys.
,
425
, p.
109913
.
72.
Zhang
,
D.
,
Lu
,
L.
,
Guo
,
L.
, and
Karniadakis
,
G. E.
,
2019
, “
Quantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems
,”
J. Comput. Phys.
,
397
, pp.
108850
.
73.
Mori
,
K.
,
Kidode
,
M.
, and
Asada
,
H.
,
1973
, “
An Iterative Prediction and Correction Method for Automatic Stereocomparison
,”
Comput. Graph. Image Process
,
2
(
3–4
), pp.
393
401
.
74.
Jin
,
X.
,
Cai
,
S.
,
Li
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
NSFnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
426
, p.
109951
75.
Feige
,
U.
,
2009
, “
Learning in Modal Space: Solving Time-Dependent Stochastic Pdes Using Physics-Informed Neural Networks
,”
Society
,
39
(
1
), pp.
122
142
.
76.
Li
,
Z.
,
Montomoli
,
F.
, and
Sharma
,
S.
, “
Investigation of Compressor Cascade Flow Based on Physics-Informed Neural Networks
.”
77.
Yin
,
M.
,
Zheng
,
X.
,
Humphrey
,
J. D.
, and
Karniadakis
,
G. E.
,
2021
, “
Non-Invasive Inference of Thrombus Material Properties With Physics-Informed Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
375
, p.
113603
.
78.
Mao
,
Z.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for High-Speed Flows
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112789
.
79.
Xu
,
H.
, and
Lei
,
T.
,
1994
, “
A Ringless High Pressure Moving Seal up to 1200 mpa
,”
Tribol. Trans
,
37
(
4
), pp.
767
770
.
80.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1977
,
Elasto-Hydrodynamic Lubrication: International Series on Materials Science and Technology Volume 23
, 1st Edition,
Pergamon Press
,
New York
.
81.
Shinde
,
A. B.
, and
Chavan
,
S. P.
,
2020
, “
Parametric Investigation of Surface Texturing on Performance Characteristics of Water Lubricated Journal Bearing Using FSI Approach
,”
SN Appl. Sci.
,
2
(
1
), pp.
1
15
.
82.
Mertz
,
A. M.
,
2019
, Numerical Analysis of Lubricated Contacts. (Order No. 13903212), ProQuest Dissertations & Theses.
83.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2020
, “
Physics Informed Extreme Learning Machine (Pielm)–A Rapid Method for the Numerical Solution of Partial Differential Equations
,”
Neurocomputing
,
391
, pp.
96
118
.
84.
Meng
,
X.
,
Li
,
Z.
,
Zhang
,
D.
, and
Karniadakis
,
G. E.
,
2020
, “
PPINN: Parareal Physics-Informed Neural Network for Time-Dependent PDEs
,”
Comput. Methods Appl. Mech. Eng.
,
370
, p.
113250
.
85.
Lyathakula
,
K. R.
, and
Yuan
,
F.-G.
,
2021
, “
Probabilistic Fatigue Life Prediction and Damage Prognostics of Adhesively Bonded Joints via ANNs-Based Hybrid Model
,” ProQuest Dissertations & Theses.
86.
Karthik Reddy Lyathakula
,
F.-G. Y.
,
2021
, “
Fatigue Damage Prognosis of Adhesively Bonded Joints via a Surrogate Model
,”
Proceedings of SPIE 11591, Sensors Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
, pp.
71
82
.
87.
Albawi
,
S.
,
Mohammed
,
T. A.
, and
Al-Zawi
,
S.
,
2017
, “
Understanding of a Convolutional Neural Network
,”
Proceedings of the 2017 International Conference on Engineering and Technology (ICET)
.
IEEE
, pp.
1
6
.
88.
Hecht-Nielsen
,
R.
Theory of the Backpropagation Neural Network**Based on “Nonindent” by Robert Hecht-Nielsen
, Which Appeared in
Proceedings of the International Joint Conference on Neural Networks 1, 593–611, June 1989, IEEE., June 1989
. Academic Press.
89.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
J. Mach. Learn. Res
,
9
, pp.
249
256
.
90.
Virtanen
,
P.
, et al
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.
91.
Cao
,
W.
,
Wang
,
X.
,
Ming
,
Z.
, and
Gao
,
J.
,
2018
, “
A Review on Neural Networks With Random Weights
,”
Neurocomputing
,
275
, pp.
278
287
.
You do not currently have access to this content.