Abstract

Sustainable energy technologies often use fluids with complex properties. As an example, sulfur is a promising fluid for use in thermal energy storage (TES) systems, with highly nonlinear thermophysical properties. The viscosity of liquid-phase sulfur varies by four orders of magnitude due to polymerization of sulfur rings between 400 K and 500 K, followed by depolymerization of long rigid chains, and a decrease in viscosity, as temperature increases. These properties may compromise the accuracy of long-established empirical correlations in the design of TES systems. This work uses computational fluid dynamics to compute steady-state free convection heat transfer coefficients of sulfur in concentric cylinders at temperatures between 400 K and 600 K. The results show that uneven distributions of high and low-viscosity sulfur in the system cause variations in flow patterns and highly nonlinear heat transfer coefficients as temperature gradients increase. As a result, existing empirical correlations for describing system performance become inaccurate. Comparisons of simulation results to predictions from well-established literature correlations show that deviations may surpass 50%. Nusselt versus Rayleigh number correlations for heat transfer are significantly affected by the loss of self-similarity. The analysis proves that existing correlations are not able to capture the complex properties of sulfur in this temperature range, suggesting that alternative modeling techniques are needed for the design and optimization of sulfur TES systems. These challenges are unlikely to be limited to sulfur as a working fluid or TES but will appear in a range of energy systems.

References

1.
Jouhara
,
H.
,
Żabnieńska-Góra
,
A.
,
Khordehgah
,
N.
,
Ahmad
,
D.
, and
Lipinski
,
T.
,
2020
, “
Latent Thermal Energy Storage Technologies and Applications: A Review
,”
Int. J. Thermofluids
,
5–6
, p.
100039
.
2.
Cabeza
,
L. F.
,
Martorell
,
I.
,
Miró
,
L.
,
Fernández
,
A. I.
, and
Barreneche
,
C.
,
2015
, “Introduction to Thermal Energy Storage (TES) Systems,”
Advances in Thermal Energy Storage Systems
,
L.F.
Cabeza
, ed.,
Woodhead Publishing
,
Cambridge
, pp.
1
28
.
3.
ELSihy
,
E. L. S. S.
,
Wang
,
X.
,
Xu
,
C.
, and
Du
,
X.
,
2021
, “
Investigation on Simultaneous Charging and Discharging Process of Water Thermocline Storage Tank Employed in Combined Heat and Power Units
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032001
.
4.
Dinçer
,
İ
, and
Rosen
,
M. A.
,
2021
,
Thermal Energy Storage
,
Wiley
,
New York
.
5.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
.
6.
Mehos
,
M.
,
Turchi
,
C.
,
Jorgenson
,
J.
,
Denholm
,
P.
,
Ho
,
C.
, and
Armijo
,
K.
,
2016
, “On the Path to SunShot: Advancing Concentrating Solar Power Technology, Performance, and Dispatchability,” National Renewable Energy Laboratory, Golden, CO.
7.
Wong
,
B.
,
Thomey
,
D.
,
Brown
,
L.
,
Roeb
,
M.
,
Buckingham
,
R.
, and
Sattler
,
C.
,
2013
, “
Sulfur Based Thermochemical Energy Storage for Concentrated Solar Power
,”
ASME 2013 7th International Conference on Energy Sustainability
,
Minneapolis, MN
,
July 14–19
, p.
V001T11A009
.
8.
Sharan
,
P.
,
Kitz
,
K.
,
Wendt
,
D.
,
McTigue
,
J.
, and
Zhu
,
G.
,
2021
, “
Using Concentrating Solar Power to Create a Geological Thermal Energy Reservoir for Seasonal Storage and Flexible Power Plant Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010906
.
9.
Koohi-Fayegh
,
S.
, and
Rosen
,
M. A.
,
2020
, “
A Review of Energy Storage Types, Applications and Recent Developments
,”
J. Energy Storage
,
27
, p.
101047
.
10.
Agrawal
,
A.
, and
Rakshit
,
D.
,
2023
, “
Analysis Based Key Components Selection of Latent Heat Thermal Energy Storage System Along With Active Heat Transfer Enhancement
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
1
), p.
011005
.
11.
Gaddala
,
U. M.
, and
Devanuri
,
J. K.
,
2020
, “
A Hybrid Decision-Making Method for the Selection of a Phase Change Material for Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041020
.
12.
Chuttar
,
A.
,
Thyagarajan
,
A.
, and
Banerjee
,
D.
,
2022
, “
Leveraging Machine Learning (Artificial Neural Networks) for Enhancing Performance and Reliability of Thermal Energy Storage Platforms Utilizing Phase Change Materials
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022001
.
13.
Yang
,
T.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2021
, “
Phase Change Material-Based Thermal Energy Storage
,”
Cell Rep. Phys. Sci.
,
2
(
8
), p.
100540
.
14.
Xu
,
B.
,
Li
,
P.
, and
Chan
,
C.
,
2015
, “
Application of Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants: A Review to Recent Developments
,”
Appl. Energy
,
160
, pp.
286
307
.
15.
Chen
,
X.
,
Zhang
,
Z.
,
Qi
,
C.
,
Ling
,
X.
, and
Peng
,
H.
,
2018
, “
State of the Art on the High-Temperature Thermochemical Energy Storage Systems
,”
Energy Convers. Manag.
,
177
, pp.
792
815
.
16.
Prasad
,
J. S.
,
Muthukumar
,
P.
,
Desai
,
F.
,
Basu
,
D. N.
, and
Rahman
,
M. M.
,
2019
, “
A Critical Review of High-Temperature Reversible Thermochemical Energy Storage Systems
,”
Appl. Energy
,
254
, p.
113733
.
17.
Guillot
,
S.
,
Faik
,
A.
,
Rakhmatullin
,
A.
,
Lambert
,
J.
,
Veron
,
E.
,
Echegut
,
P.
,
Bessada
,
C.
,
Calvet
,
N.
, and
Py
,
X.
,
2012
, “
Corrosion Effects Between Molten Salts and Thermal Storage Material for Concentrated Solar Power Plants
,”
Appl. Energy
,
94
, pp.
174
181
.
18.
Nithyanandam
,
K.
,
Barde
,
A.
,
Lakeh
,
R. B.
, and
Wirz
,
R. E.
,
2018
, “
Charge and Discharge Behavior of Elemental Sulfur in Isochoric High Temperature Thermal Energy Storage Systems
,”
Appl. Energy
,
214
, pp.
166
177
.
19.
Lappalainen
,
J.
,
Hakkarainen
,
E.
,
Sihvonen
,
T.
,
Rodríguez-García
,
M. M.
, and
Alopaeus
,
V.
,
2019
, “
Modelling a Molten Salt Thermal Energy System—A Validation Study
,”
Appl. Energy
,
233–234
, pp.
126
145
.
20.
Lakeh
,
R. B.
,
Wirz
,
R. E.
,
Kavehpour
,
P.
, and
Lavine
,
A. S.
,
2018
, “
A Dimensionless Model for Transient Turbulent Natural Convection in Isochoric Vertical Thermal Energy Storage Tubes
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
034501
.
21.
Tatsidjodoung
,
P.
,
Le Pierrès
,
N.
, and
Luo
,
L.
,
2013
, “
A Review of Potential Materials for Thermal Energy Storage in Building Applications
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
327
349
.
22.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.
23.
Caraballo
,
A.
,
Galán-Casado
,
S.
,
Caballero
,
Á
, and
Serena
,
S.
,
2021
, “
Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis
,”
Energies (Basel)
,
14
(
4
), p.
1197
.
24.
Barde
,
A.
,
Jin
,
K.
,
Shinn
,
M.
,
Nithyanandam
,
K.
, and
Wirz
,
R. E.
,
2018
, “
Demonstration of a Low Cost, High Temperature Elemental Sulfur Thermal Battery
,”
Appl. Therm. Eng.
,
137
, pp.
259
267
.
25.
Wang
,
Y.
,
Barde
,
A.
,
Jin
,
K.
, and
Wirz
,
R. E.
,
2020
, “
System Performance Analyses of Sulfur-Based Thermal Energy Storage
,”
Energy
,
195
, p.
116996
.
26.
Song
,
X.
,
Zhang
,
G.
,
Tan
,
H.
,
Chang
,
L.
,
Cai
,
L.
,
Xu
,
G.
,
Deng
,
Z.
, and
Han
,
Z.
,
2020
, “
Review on Thermophysical Properties and Corrosion Performance of Molten Salt in High Temperature Thermal Energy Storage
,”
IOP Conf. Ser. Earth Environ. Sci.
,
474
(
5
), p.
052071
.
27.
González-Roubaud
,
E.
,
Pérez-Osorio
,
D.
, and
Prieto
,
C.
,
2017
, “
Review of Commercial Thermal Energy Storage in Concentrated Solar Power Plants: Steam vs. Molten Salts
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
133
148
.
28.
Reddy Prasad
,
D. M.
,
Senthilkumar
,
R.
,
Lakshmanarao
,
G.
,
Krishnan
,
S.
, and
Naveen Prasad
,
B. S.
,
2019
, “
A Critical Review on Thermal Energy Storage Materials and Systems for Solar Applications
,”
AIMS Energy
,
7
(
4
), pp.
507
526
.
29.
Barde
,
A.
,
Nithyanandam
,
K.
,
Shinn
,
M.
, and
Wirz
,
R. E.
,
2020
, “
Sulfur Heat Transfer Behavior for Uniform and Non-Uniform Thermal Charging of Horizontally-Oriented Isochoric Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transfer
,
153
, p.
119556
.
30.
Shinn
,
M.
,
Nithyanandam
,
K.
,
Barde
,
A.
, and
Wirz
,
R. E.
,
2018
, “
Sulfur-Based Thermal Energy Storage System Using Intermodal Containment: Design and Performance Analysis
,”
Appl. Therm. Eng.
,
128
, pp.
1009
1021
.
31.
Nithyanandam
,
K.
,
Barde
,
A.
, and
Wirz
,
R. E.
,
2018
, “
Heat Transfer Behavior of Elemental Sulfur for Low Temperature Thermal Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
127
, pp.
936
948
.
32.
Rubero
,
P. A.
,
1964
, “
Effect of Hydrogen Sulfide on the Viscosity of Sulfur
,”
J. Chem. Eng. Data
,
9
(
4
), pp.
481
484
.
33.
Lakeh
,
R. B.
,
Nathanandam
,
K.
,
Barde
,
A.
,
Tse
,
L.
, and
Wirz
,
R. E.
,
2016
, “
Effect of Viscosity Variations on Charge and Discharge Time of a Sulfur-Based Thermal Energy Storage System
,”
ASME 10th International Conference on Energy Sustainability
,
Charlotte, NC
,
June 26–30
.
34.
Bacon
,
R. F.
, and
Fanelli
,
R.
,
1943
, “
The Viscosity of Sulfur 1
,”
J. Am. Chem. Soc.
,
65
(
4
), pp.
639
648
.
35.
Tuller
,
W. N.
,
1954
, Freeport Sulphur Company,
The Sulphur Data Book
,
McGraw-Hill
,
New York
.
36.
Kozhevnikov
,
V. F.
,
Payne
,
W. B.
,
Olson
,
J. K.
,
McDonald
,
C. L.
, and
Inglefield
,
C. E.
,
2004
, “
Physical Properties of Sulfur Near the Polymerization Transition
,”
J. Chem. Phys.
,
121
(
15
), pp.
7379
7386
.
37.
Meyer
,
B.
,
1976
, “
Elemental Sulfur
,”
Chem. Rev.
,
76
(
3
), pp.
367
388
.
38.
Fanelli
,
R.
,
1946
, “
Modifying the Viscosity of Sulfur
,”
Ind. Eng. Chem.
,
38
(
1
), pp.
39
43
.
39.
Stashick
,
M. J.
,
Sofekun
,
G. O.
, and
Marriott
,
R. A.
,
2020
, “
Modifying Effects of Hydrogen Sulfide on the Rheometric Properties of Liquid Elemental Sulfur
,”
AIChE J.
,
66
(
6
).
40.
Fanelli
,
R.
,
1949
, “
Solubility of Hydrogen Sulfide in Sulfur
,”
Ind. Eng. Chem.
,
41
(
9
), pp.
2031
2033
.
41.
Ji
,
Y.
,
Li
,
H.
,
Xu
,
Z.
, and
Tan
,
Z.
,
2011
, “
The Diffusion Coefficient of H2S in Liquid Sulfur
,”
Fluid Phase Equilib.
,
307
(
2
), pp.
135
141
.
42.
Rasmussen
,
E.
,
Yellapantula
,
S.
, and
Martin
,
M. J.
,
2021
, “
How Equation of State Selection Impacts Accuracy Near the Critical Point: Forced Convection Supercritical CO2 Flow Over a Cylinder
,”
J. Supercrit. Fluids
,
171
, p.
105141
.
43.
Martin
,
M. J.
,
Rasmussen
,
E. G.
, and
Yellapantula
,
S.
,
2020
, “
Nonlinear Heat Transfer From Particles in Supercritical Carbon Dioxide Near the Critical Point
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
034501
.
44.
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
,
1975
, “
A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems
,”
Adv. Heat Transfer
,
11
, pp.
265
315
.
45.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
19
(
10
), pp.
1127
1134
.
46.
Zheng
,
X.
,
Xie
,
N.
,
Chen
,
C.
,
Gao
,
X.
,
Huang
,
Z.
, and
Zhang
,
Z.
,
2018
, “
Numerical Investigation on Paraffin/Expanded Graphite Composite Phase Change Material Based Latent Thermal Energy Storage System With Double Spiral Coil Tube
,”
Appl. Therm. Eng.
,
137
, pp.
164
172
.
47.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Introduction to Heat Transfer
,
Wiley
,
Hoboken, NJ
.
48.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
,
New York
.
49.
Francis
,
N. D.
, Jr.
,
Itamura
,
M. T.
,
Webb
,
S. W.
, and
James
,
D. L.
,
2002
, “
CFD Calculation of Internal Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
Sandia National Laboratories
, Albuquerque, NM, and Livermore, CA.
50.
Teertstra
,
P.
, and
Yovanovich
,
M. M.
,
1998
, “
Comprehensive Review of Natural Convection in Horizontal Circular Annuli
,”
7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
, HTD-Vol.357-4,
Albuquerque, NM
, p.
141
.
51.
Yuan
,
X.
,
Tavakkoli
,
F.
, and
Vafai
,
K.
,
2015
, “
Analysis of Natural Convection in Horizontal Concentric Annuli of Varying Inner Shape
,”
Numer. Heat Transfer, Part A
,
68
(
11
), pp.
1155
1174
.
52.
Ansys
,
2021
,
Ansys Fluent Theory Guide
, 2021R1 ed.,
ANSYS Inc.
,
Canonsburg, PA
.
53.
Cieśliński
,
J. T.
,
Smolen
,
S.
, and
Sawicka
,
D.
,
2021
, “
Free Convection Heat Transfer From Horizontal Cylinders
,”
Energies (Basel)
,
14
(
3
), p.
559
.
54.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), p.
365
.
55.
Krause
,
F.
,
Schüttenberg
,
S.
, and
Fritsching
,
U.
,
2010
, “
Modelling and Simulation of Flow Boiling Heat Transfer
,”
Int. J. Numer. Methods Heat Fluid Flow
,
20
(
3
), pp.
312
331
.
You do not currently have access to this content.