Abstract

Hybrid drive wind power generation systems (WPGSs) equipped with speed-regulating differential mechanisms (SRDMs) have emerged as a promising solution for integrating large-scale wind energy into the power grid without the need for partially or fully rated converters. This article presents a comprehensive study on the dynamic analysis and parameter optimization of the SRDM-based transmission, with the aim of providing a sound foundation for the design and performance improvement of hybrid drive WPGSs. This study first formulates the kinematics, power flow, and mechanical efficiency of the SRDM and then proposes an effective parameter configuration model for optimizing the speed ratios of the key link units. The objective function is set as the minimum peak power required for speed regulation by the SRDM. Furthermore, to deal with the unique mechanical features such as dual power inputs, continuously variable transmission, and time-varying steering mechanism, an appropriate nonlinear dynamic modeling method of the SRDM transmission is developed. The torsion–translation vibration equations are derived and solved using the Runge–Kutta numerical integral method, considering randomly changing wind speed inputs and time-varying internal/external excitations. Results reveal that the sun gear experiences severe vibrations with the maximal and average vibration displacements of 0.563 mm and 0.112 mm, respectively, in the circumferential direction, while the planet gear exhibits complex frequency responses. Finally, specialized case studies are demonstrated to verify the proposed approaches, showing the satisfactory on-grid operating performance of the proposed SRDM-based WPGSs.

References

1.
Ding
,
T.
,
Jia
,
W.
,
Shahidehpour
,
M.
,
Han
,
O.
,
Sun
,
Y.
, and
Zhang
,
Z.
,
2022
, “
Review of Optimization Methods for Energy Hub Planning, Operation, Trading, and Control
,”
IEEE Trans. Sustainable Energy
,
13
(
3
), pp.
1802
1818
.
2.
Lee
,
J.
, and
Zhao
,
F.
,
2021
,
Global Wind Report 2021
,
Global Wind Energy Council
,
Brussels, Belgium
.
3.
Sayahi
,
K.
,
Kadri
,
A.
,
Bacha
,
F.
, and
Marzougui
,
H.
,
2020
, “
Implementation of a D-STATCOM Control Strategy Based on Direct Power Control Method for Grid-Connected Wind Power Generation System
,”
Int. J. Electr. Power Energy Syst.
,
121
, p.
106105
.
4.
Xia
,
Y.
,
Chen
,
Y.
,
Song
,
Y.
, and
Strunz
,
K.
,
2020
, “
Multi-Scale Modeling and Simulation of DFIG-Based Wind Energy Conversion System
,”
IEEE Trans. Energy Convers.
,
35
(
1
), pp.
560
572
.
5.
Zhu
,
R.
,
Chen
,
Z.
,
Tang
,
Y.
,
Deng
,
F.
, and
Wu
,
X.
,
2016
, “
Dual-Loop Control Strategy for DFIG-Based Wind Power Generation Systems Under Grid Voltage Disturbances
,”
IEEE Trans. Power Electron.
,
31
(
3
), pp.
2239
2253
.
6.
Huang
,
S.
,
Wang
,
J.
,
Huang
,
C.
,
Zhou
,
L.
,
Xiong
,
L.
,
Liu
,
J.
, and
Li
,
P.
,
2022
, “
A Fixed-Time Fractional-Order Sliding Mode Control Strategy for Power Quality Enhancement of PMSG Wind Power Generation System
,”
Int. J. Electr. Power Energy Syst.
,
134
, p.
107354
.
7.
Saqib
,
M.
, and
Saleem
,
A.
,
2015
, “
Power-Quality Issues and the Need for Reactive-Power Compensation in the Grid Integration of Wind Power
,”
Renew. Sustainable Energy Rev.
,
43
, pp.
51
64
.
8.
Wu
,
C.
,
Wang
,
Q.
,
Yuan
,
R.
,
Luo
,
K.
, and
Fan
,
J.
,
2022
, “
Large Eddy Simulation of the Layout Effects on Wind Farm Performance Coupling With Wind Turbine Control Strategies
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
051304
.
9.
Qazi
,
H. W.
,
Wall
,
P.
,
Val Escudero
,
M.
,
Carville
,
C.
,
Cunniffe
,
N.
, and
O’Sullivan
,
J.
,
2022
, “
Impacts of Fault Ride-Through Behavior of Wind Farms on a Low Inertia System
,”
IEEE Trans. Power Syst.
,
37
(
4
), pp.
3190
3198
.
10.
Idan
,
M.
, and
Lior
,
D.
,
2000
, “
Continuously Variable Speed Wind Power Generation System Transmission Concept and Robust Control
,”
Wind Eng.
,
24
(
3
), pp.
151
167
.
11.
Zhao
,
X.
, and
Maißer
,
P.
,
2003
, “
A Novel Power Splitting Drive Train for Variable Speed Wind Power Generators
,”
Renew. Energy
,
28
(
13
), pp.
2001
2011
.
12.
Jelaska
,
D.
,
Podrug
,
S.
, and
Perkušić
,
M.
,
2015
, “
A Novel Hybrid Transmission for Variable Speed Wind Power Generation Systems
,”
Renew. Energy
,
83
, pp.
78
84
.
13.
Lin
,
Y.
,
Tu
,
L.
,
Liu
,
H.
, and
Li
,
W.
,
2015
, “
Hybrid Power Transmission Technology in a Wind Power Generation System
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1218
1225
.
14.
Yin
,
X.-X.
,
Li
,
Y.-G.
, and
Li
,
W.
,
2015
, “
Operating Modes and Control Strategy for Megawatt-Scale Hydro-Viscous Transmission-Based Continuously Variable Speed Wind Power Generation Systems
,”
IEEE Trans. Sustainable Energy
,
6
(
4
), pp.
1553
1564
.
15.
Rui
,
X.
,
Yin
,
W.
,
Dong
,
Y.
,
Lin
,
L.
, and
Wu
,
X.
,
2019
, “
Fractional-Order Sliding Mode Control for Hybrid Drive Wind Power Generation System With Disturbances in the Grid
,”
Wind Energy
,
22
(
1
), pp.
49
64
.
16.
Yin
,
W.
,
Wu
,
X.
, and
Rui
,
X.
,
2019
, “
Adaptive Robust Backstepping Control of the Speed Regulating Differential Mechanism for Wind Power Generation Systems
,”
IEEE Trans. Sustainable Energy
,
10
(
3
), pp.
1311
1318
.
17.
Liu
,
R.
,
Yao
,
J.
,
Wang
,
X.
,
Sun
,
P.
,
Pei
,
J.
, and
Hu
,
J.
,
2020
, “
Dynamic Stability Analysis and Improved LVRT Schemes of DFIG-Based Wind Power Generation Systems During a Symmetrical Fault in a Weak Grid
,”
IEEE Trans. Power Electron.
,
35
(
1
), pp.
303
318
.
18.
Petković
,
D.
,
Ćojbašića
,
Z.
,
Nikolića
,
V.
,
Shamshirband
,
S.
,
Kiah
,
M. L. M.
,
Anuar
,
N. B.
, and
Wahab
,
A. W. A.
,
2014
, “
Adaptive Neuro-Fuzzy Maximal Power Extraction of Wind Power Generation System With Continuously Variable Transmission
,”
Energy
,
64
, pp.
868
874
.
19.
Yin
,
X.
,
Lin
,
Y.
,
Li
,
W.
, and
Gu
,
H.
,
2016
, “
Hydro-Viscous Transmission Based Maximum Power Extraction Control for Continuously Variable Speed Wind Power Generation System With Enhanced Efficiency
,”
Renew. Energy
,
87
, pp.
646
655
.
20.
Li
,
D. Y.
,
Cai
,
W. C.
,
Li
,
P.
,
Xue
,
S.
,
Song
,
Y. D.
, and
Chen
,
H. J.
,
2018
, “
Dynamics and Control for a Novel Front-End Speed Regulation (FESR) Wind Power Generation System
,”
IEEE Trans. Power Electron.
,
33
(
5
), pp.
4073
4087
.
21.
Yin
,
W. L.
,
Rui
,
X. M.
,
Liu
,
L.
, and
Hu
,
X.
,
2018
, “
Operating Performance Analysis on Wind Power Generation Systems With the Speed Regulating Differential Mechanism
,”
J. Renew. Sustainable Energy
,
10
(
6
), p.
063301
.
22.
Yin
,
W. L.
,
Dong
,
Z. Y.
,
Liu
,
L.
, and
Rui
,
X.
,
2020
, “
Self-Stabilizing Speed Regulating Differential Mechanism for Continuously Variable Speed Wind Power Generation System
,”
IET Renew. Power Generation
,
14
(
15
), pp.
3002
3009
.
23.
Wei
,
J.
,
Zhang
,
A.
,
Qin
,
D.
,
Lim
,
T. C.
,
Shu
,
R.
,
Lin
,
X.
, and
Meng
,
F.
,
2017
, “
A Coupling Dynamics Analysis Method for a Multistage Planetary Gear System
,”
Mech. Mach. Theory
,
110
, pp.
27
49
.
24.
Xu
,
H.
,
Qin
,
D.
,
Liu
,
C.
, and
Zhang
,
Y.
,
2021
, “
An Improved Dynamic Model Updating Method for Multistage Gearbox Based on Surrogate Model and Sensitivity Analysis
,”
IEEE Access
,
9
, pp.
18527
18537
.
25.
Dong
,
H.
,
Wu
,
Y.
,
Wang
,
D.
, and
Bai
,
S.
,
2016
, “
M-DOF Dynamic Model for Load Sharing Behavior Analysis of PGT
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
993
1001
.
26.
Yi
,
P.
,
Dong
,
L.
, and
Shi
,
T.
,
2014
, “
Multi-Objective Genetic Algorithms Based Structural Optimization and Experimental Investigation of the Planet Carrier in Wind Power Generation System Gearbox
,”
Front. Mech. Eng.
,
9
(
4
), pp.
354
367
.
27.
Tan
,
J.
,
Zhu
,
C.
,
Song
,
C.
,
Han
,
H.
, and
Li
,
Y.
,
2019
, “
Effects of Flexibility and Suspension Configuration of Main Shaft on Dynamic Characteristics of Wind Power Generation System Drivetrain
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
36
.
28.
Helsen
,
J.
,
Vanhollebeke
,
F.
,
Marrant
,
B.
,
Vandepitte
,
D.
, and
Desmet
,
W.
,
2011
, “
Multibody Modelling of Varying Complexity for Modal Behavior Analysis of Wind Power Generation System Gearboxes
,”
Renew. Energy
,
36
(
11
), pp.
3098
3113
.
29.
Helsen
,
J.
,
2021
, “
Review of Research on Condition Monitoring for Improved O&M of Offshore Wind Power Generation System Drivetrains
,”
Acoustics Australia
,
49
(
2
), pp.
251
258
.
30.
Liu
,
G.
,
Liu
,
H.
,
Zhu
,
C.
,
Mao
,
T.
, and
Hu
,
G.
,
2021
, “
Design Optimization of a Wind Power Generation System Gear Transmission Based on Fatigue Reliability Sensitivity
,”
Front. Mech. Eng.
,
16
(
1
), pp.
61
79
.
31.
Wei
,
S.
,
Zhao
,
J.
,
Han
,
Q.
, and
Chu
,
F.
,
2015
, “
Dynamic Response Analysis on Torsional Vibrations of Wind Power Generation System Geared Transmission System With Uncertainty
,”
Renew. Energy
,
78
, pp.
60
67
.
32.
Luo
,
M. Y.
,
1984
,
Planetary Gear Mechanism
,
Higher Education Press
,
Beijing
, pp.
13
21
.
33.
ChineseStandard
,
2009
, “
Power Quality-Frequency Deviation for Power System
,” Chinese Standard GB/T15945-2008.
You do not currently have access to this content.