Abstract

A nonlinear system identification approach was used to exploit the nonlinearly in the exergy of the system and reduce it into two or more interconnected elements. The Hammerstein–Wiener (H-W) methodology was adopted to describe the dynamics of a passive thermal system using a combination of nonlinear and linear blocks. Here, the linear block is a discrete transfer function, which symbolizes the dynamic component of the model. The proposed model was validated using the state functions measured for the solar air collector. The mean absolute percentage error (MAPE) for enthalpy changes falls in the domain of −0.01% to 0.01%, whereas it varied from −0.06% to 0.02% as the entropy of the system changed with time. Similarly, the MAPE encountered while evaluating the exergy of the system was in the closed interval of −0.066% to −0.0017%. The average exergy gain by the H-W model across the Ist and IInd passages was, respectively, 0.90 kJ · kg−1 (8.10 g · s−1), 0.61 kJ · kg−1 (10.10 g · s−1) and 0.46 kJ · kg−1 (12.10 g · s−1); and 0.57 kJ · kg−1 (8.10 g · s−1), 0.48 kJ · kg−1 (10.10 g · s−1), and 0.79 kJ · kg−1 (12.10 g · s−1). The proposed model exhibited good fitting with the validation data.

References

1.
IEA
,
2022
, “
Global CO2 Emissions Rebounded to Their Highest Level in History in 2021
,” https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021, Accessed August 2, 2022.
2.
Mercom India
,
2021, “
Solar’s Share in India’s Installed Power Capacity Mix Increases to 12.4% as of Q4 2021,”
https://www.mercomindia.com/magazine/book?pdf=https://mercomindia.s3.ap-south-1.amazonaws.com/wpcontent/uploads/2022/01/Mercom-India-Clean-Energy-Magazine-Dec-2021-1.pdf
3.
Dash
,
S.
,
Choudhury
,
S.
, and
Dash
,
K. K.
,
2022
, “
Energy and Exergy Analyses of Solar Drying of Black Cardamom (Amomum subulatom Roxburgh) Using Indirect Type Flat Plate Collector Solar Dryer
,”
J. Food Process Eng.
,
45
(
4).
4.
Pathak
,
P. K.
,
Chandra
,
P.
, and
Raj
,
G.
,
2021
, “
Energy and Exergy Analysis of Corrugated Plate Solar Collector by Forced Convection Using Two Different Absorber Plate Material
,”
Heat Mass Transfer/Waerme-Und Stoffuebertragung
,
57
(
4
), pp.
565
581
.
5.
Assari
,
M. R.
,
Tabrizi
,
H. B.
,
Jafari
,
I.
, and
Najafpour
,
E.
,
2014
, “
An Energy and Exergy Analysis of Water and Air With Different Passage in a Solar Collector
,”
Energy Sources, Part A: Recovery, Util. Environ. Eff.
,
36
(
7
), pp.
747
754
.
6.
Rostami
,
S.
,
Sepehrirad
,
M.
,
Dezfulizadeh
,
A.
,
Hussein
,
A. K.
,
Goldanlou
,
A. S.
, and
Shadloo
,
M. S.
,
2020
, “
Exergy Optimization of a Solar Collector in Flat Plate Shape Equipped With Elliptical Pipes Filled With Turbulent Nanofluid Flow: A Study for Thermal Management
,”
Water (Switzerland)
,
12
(
8)
,
2294
.
7.
Dhaundiyal
,
A.
, and
Gebremicheal
,
G. H.
,
2022
, “
The Effect of Psychrometry on the Performance of a Solar Collector
,”
Environ. Sci. Pollut. Res.
,
29
(
9
), pp.
13445
13458
.
8.
Tyagi
,
V. V.
,
Pandey
,
A. K.
,
Giridhar
,
G.
,
Bandyopadhyay
,
B.
,
Park
,
S. R.
, and
Tyagi
,
S. K.
,
2012
, “
Comparative Study Based on Exergy Analysis of Solar air Heater Collector Using Thermal Energy Storage
,”
Int. J. Energy Res.
,
36
(
6
), pp.
724
736
.
9.
Reddy
,
J.
,
Jagadish, Negi
,
S.
,
Das
,
B.
,
Ali Ehyaei
,
M.
, and
Assad
,
M. E. H.
,
2022
, “
Energy and Exergy Analysis of a Trapezoidal Absorber Plate-Based Solar Air Collector
,”
Energy Sci. Eng.
,
10
(
4
), pp.
1067
1082
.
10.
Khalil
,
W. H.
,
Obaid
,
Z. A. H.
, and
Dawood
,
H. K.
,
2019
, “
Exergy Analysis of Single-Flow Solar Air Collectors With Different Configurations of Absorber Plates
,”
Heat Transf. Asian Res.
,
48
(
8
), pp.
3600
3616
.
11.
Geete
,
A.
, and
Sharma
,
R.
,
2019
, “
Experimental Exergy Analyses on Fabricated Parabolic Solar Collector With/Without Preheater and Different Collector Materials
,”
Int. J. Ambient Energy
,
40
(
6
), pp.
577
589
. 0.1080/01430750.2017.1422144
12.
Wenceslas
,
K. Y.
, and
Ghislain
,
T.
,
2019
, “
Experimental Validation of Exergy Optimization of a Flat-Plate Solar Collector in a Thermosyphon Solar Water Heater
,”
Arab. J. Sci. En.
,
44
(
3
), pp.
2535
2549
.
13.
Reddy
,
J.
,
Debnath
,
S.
,
Das
,
B.
, and
Jagadish
,
2019
, “
Energy and Exergy Analysis of Wavy Plate Solar Air Collector Using a Novel Hybrid Expert System
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
10
).
14.
Velmurugan
,
P.
, and
Kalaivanan
,
R.
,
2016
, “
Energy and Exergy Analysis in Double-Pass Solar Air Heater
,”
Sadhana—Academy Proc. Eng. Sci.
,
41
(
3
), pp.
369
376
.
15.
Velmurugan
,
P.
, and
Kalaivanan
,
R.
,
2015
, “
Energy and Exergy Analysis of Multi-Pass Flat Plate Solar air Heater—An Analytical Approach
,”
Int. J. Green Energy
,
12
(
8
), pp.
810
820
.
16.
Kaushik
,
S. C.
, and
Ranjan
,
K. R.
,
2016
, “
Energetic and Exergetic Performance Evaluation of Natural Circulation Solar Water Heating Systems
,”
Appl. Solar Energy (English Translation of Geliotekhnika)
,
52
(
1
), pp.
16
26
.
17.
Koholé
,
Y. W.
,
Fohagui
,
F. C. V.
, and
Tchuen
,
G.
,
2021
, “
Flat-Plate Solar Collector Thermal Performance and Optimal Operation Mode by Exergy Analysis and Numerical Simulation
,”
Arab. J. Sci. Eng.
,
46
(
2
), pp.
1877
1897
.
18.
Tsatsaronis
,
G.
,
2008
, “
Recent Developments in Exergy Analysis and Exergoeconomics
,”
Int. J. Exergy
,
5
(
5/6
), p.
489
.
19.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2009
, “
Advanced Exergetic Evaluation of Refrigeration Machines Using Different Working Fluids
,”
Energy
,
34
(
12
), pp.
2248
2258
.
20.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
Wiley
,
New York
.
21.
De Jong
,
J. B. R. M.
,
1980
,
Een Karakterisering van de Zonnestraling in Nederland
,
Doctoraalverslag
,
Eindhoven, The Netherlands
, p.
2
.
22.
Dhaundiyal
,
A.
,
2022
, “
Rheological Behavior of Air in the Two-Pass Solar Collector
,”
Front. Energy Res.
,
10
.
You do not currently have access to this content.