Abstract

Shale formations as major unconventional energy resources are crucial in satisfying the global energy needs of the future. Via nanoindentation method and upscale method, the macromechanical parameters of shale, such as hardness, elastic modulus, are obtained. The conventional Mori–Tanaka upscale method only divides the data into three mineral classes and fails to fully incorporate micromechanical properties to reflect the macroscale properties of samples. The research measures micromechanical parameters of shale via nanoindentation and performs cluster analysis of nanoindentation measurements. The results of cluster analysis are then combined with the Mori–Tanaka upscale model to evaluate the macroscale mechanical property of shale. The elastic modulus, hardness, and fracture toughness are divided into five groups (clusters) via cluster analysis, with each representing a certain mineral composition. This research is of great significance for more reasonably and accurately characterizing shale mechanical properties, optimizing the recovery scheme, and improving the recovery efficiency of shale gas.

References

1.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
2.
Chuang
,
S. F.
,
Lin
,
S. Y.
,
Wei
,
P. J.
,
Han
,
C. F.
,
Lin
,
J. F.
, and
Chang
,
H. C.
,
2015
, “
Characterization of the Elastic and Viscoelastic Properties of Dentin by a Nanoindentation Creep Test
,”
J. Biomech.
,
48
(
10
), pp.
2155
2161
.
3.
Golovin
,
Y. I.
,
Tyurin
,
A. I.
, and
Victorov
,
S. D.
,
2017
, “
Physico-Mechanical Properties and Micromechanisms of Local Deformation in Thin Near-Surface Layers of Complex Multiphase Materials
,”
Bull. Russ. Acad. Sci.: Phys.
,
81
(
3
), pp.
360
364
.
4.
Liu
,
K. Q.
,
Ostadhassan
,
M.
, and
Bubach
,
B.
,
2016
, “
Applications of Nano-Indentation Methods to Estimate Nanoscale Mechanical Properties of Shale Reservoir Rocks
,”
J. Nat. Gas Sci. Eng.
,
35
(
1
), pp.
1310
1319
.
5.
Constantinides
,
G.
,
Chandran
,
K. S.
,
Ulm
,
F. J.
, and
Vliet
,
K. J.
,
2006
, “
Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation
,”
Mater. Sci. Eng. A.
,
430
(
1
), pp.
189
202
.
6.
Ulm
,
F. J.
, and
Abousleiman
,
Y.
,
2006
, “
The Nanogranular Nature of Shale
,”
Acta. Geotech.
,
1
(
2
), pp.
77
88
.
7.
Wang
,
F. P.
,
Reed
,
R. M.
, and
John
,
A.
,
2009
, “
Pore Networks and Fluid Flow in Gas Shales
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 4–7
, pp.
1550
1557
.
8.
Liu
,
K. Q.
, and
Ostadhassan
,
M.
,
2017
, “
Microstructural and Geomechanical Analysis of Bakken Shale at Nanoscale
,”
J. Pet. Sci. Eng.
,
153
(
1
), pp.
133
144
.
9.
Cheng
,
H.
,
2016
, “
Lithology Identification Method of Continental Shale Strata Based on Logging Data
,”
Groundwater
,
38
(
2
), pp.
111
113
.
10.
Abedi
,
S.
,
Slim
,
M.
, and
Hofmann
,
R.
,
2016
, “
Nanochemo-Mechanical Signature of Organic-Rich Shales: A Coupled Indentation–EDX Analysis
,”
Acta Geotechnica
,
11
(
3
), pp.
559
572
.
11.
Xue
,
Q. F.
,
Wang
,
Y. B.
, and
Zhai
,
H. Y.
,
2018
, “
Automatic Identification of Fractures Using a Density-Based Clustering Algorithm with Time-Spatial Constraints
,”
Energies
,
11
(
3
), p.
563
.
12.
Sondergeld
,
C. H.
,
Newsham
,
K. E.
, and
Comisky
,
J. T.
,
2010
, “
Petrophysical Considerations in Evaluating and Producing Shale Gas Resources
,”
Proceedings of the SPE Unconventional Gas Conference
,
Pittsburgh, PA
,
Feb. 23–25
, pp.
99
132
.
13.
Kumar
,
V.
,
Sondergeld
,
C. H.
, and
Rai
,
C. S.
,
2012
, “
Nano to Macro Mechanical Characterization of Shale
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
, OnePetro, pp.
3421
3443
.
14.
Liu
,
K.
,
Ostadhassan
,
M.
, and
Bubach
,
B.
,
2016
, “
Applications of Nano-Indentation Methods to Estimate Nanoscale Mechanical Properties of Shale Reservoir Rocks
,”
J. Nat. Gas. Sci. Eng.
,
35
, pp.
1310
1319
.
15.
Li
,
C. X.
,
Ostadhassan
,
M.
, and
Abarghani
,
A.
,
2019
, “
Multi-Scale Evaluation of Mechanical Properties of the Bakken Shale
,”
J. Mater. Sci.
,
54
(
3
), pp.
2133
2151
.
16.
Veytskin
,
Y. B.
,
Tammina
,
V. K.
,
Bobko
,
C. P.
,
Hartley
,
P. G.
,
Clennell
,
M. B.
,
Dewhurst
,
D. N.
, and
Dagastine
,
R. R.
,
2017
, “
Micromechanical Characterization of Shales Through Nanoindentation and Energy Dispersive X-Ray Spectrometry
,”
Geomech. Energy. Environ.
,
9
, pp.
21
35
.
17.
Zhang
,
F.
,
Guo
,
H. Q.
, and
Hu
,
D. W.
,
2018
, “
Characterization of the Mechanical Properties of a Claystone by Nano-Indentation and Homogenization
,”
Acta Geotechnica
,
13
(
6
), pp.
1395
1404
.
18.
Adolfssona
,
A.
,
Ackermana
,
M.
, and
Brownstein
,
N. C.
,
2018
, “
To Cluster, or Not to Cluster: An Analysis of Clusterability Methods
,”
Pattern Recognit.
,
88
, pp.
13
26
.
19.
Hull
,
K.
, and
Abousleiman
,
Y.
,
2021
, “
SEM Analysis of Pop-Ins Manifested in Layered Porous Geological Material
,”
MRS Commun.
,
11
(
6
), pp.
747
754
.
20.
Luo
,
S. M.
,
Lu
,
Y. H.
,
Wu
,
Y. K.
,
Song
,
J. L.
,
Degroot
,
D. J.
,
Jin
,
Y.
, and
Zhang
,
G. P.
,
2020
, “
Cross-Scale Characterization of the Elasticity of Shales: Statistical Nanoindentation and Data Analytics
,”
J. Mech. Phys. Solids
,
140
, p.
103945
.
21.
Luo
,
S. M.
,
Kim
,
D.
,
Wu
,
Y. K.
,
Wang
,
D. F.
,
Kim
,
D. Y.
,
Song
,
J. L.
, and
Zhang
,
G. P.
,
2021
, “
Big Data Nanoindentation and Analytics Reveal the Multi-Staged, Progressively-Homogenized, Depth-Dependent Upscaling of Rocks’ Properties. Rock
,”
Mech. Rock. Eng.
,
64
(
3
), pp.
1501
1532
.
22.
Zheng
,
W.
,
Tannant
,
D. D.
,
Cui
,
X.
,
Xu
,
C.
, and
Hu
,
X.
,
2020
, “
Improved Discrete Element Modeling for Proppant Embedment Into Rock Surfaces
,”
Acta Geotech.
,
15
(
3
), pp.
347
364
.
23.
Bartier
,
D.
, and
Auvray
,
C.
,
2017
, “
Determination of Elastic Modulus of Claystone: Nano-/Micro-Indentation and Meso-Compression Tests Used to Investigate Impact of Alkaline Fluid Propagation Over 18 Years
,”
J. Rock. Mech. Geotech.
,
9
(
3
), pp.
511
518
.
24.
Wang
,
J. S.
,
Zheng
,
X. J.
,
Zheng
,
H.
,
Song
,
S. T.
, and
Zhu
,
Z.
,
2010
, “
Identification of Elastic Parameters of Transversely Isotropic Thin Films by Combining Nanoindentation and FEM Analysis
,”
Comput. Mater. Sci.
,
49
(
2
), pp.
378
385
.
25.
Yang
,
R.
,
Zhang
,
T. H.
, and
Feng
,
Y. H.
,
2010
, “
Theoretical Analysis of the Relationships Between Hardness, Elastic Modulus, and the Work of Indentation for Work-Hardening Materials
,”
J. Mater. Res.
,
25
(
11
), pp.
2072
2077
.
26.
Chen
,
Z. Y.
, and
Diebels
,
S.
,
2012
, “
Modelling and Parameter Re-Identification of Nanoindentation of Soft Polymers Taking Into Account Effects of Surface Roughness
,”
Comput. Math. Appl.
,
64
(
9
), pp.
2775
2786
.
27.
Chen
,
P.
,
Han
,
Q.
,
Ma
,
T.
, and
Lin
,
D.
,
2015
, “
The Mechanical Properties of Shale Based on Micro-Indentation Test
,”
Petrol. Explor. Dev.
,
42
(
5
), pp.
662
670
.
28.
Liu
,
H.
,
Yu
,
A.
,
Fan
,
Y.
,
Cui
,
S.
, and
Liu
,
T.
,
2019
, “
Experimental Research on Mechanical Properties and Distruction Laws of Deep Brittle Shale
,”
Chin. J. Undergr. Space Eng.
,
15
(
2
), pp.
604
608
.
29.
Elmustafa
,
A. A.
, and
Stone
,
D. S.
,
2003
, “
Nanoindentation and the Indentation Size Effect: Kinetics of Deformation and Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
357
381
.
30.
Li
,
Q.
,
Chen
,
M.
,
Jin
,
Y.
, and
Wang
,
F. P.
,
2012
, “
Experimental Research on Failure Modes and Mechanical Behaviors of Gas-Bearing Shale
,”
Chin. J. Rock Mech. Eng.
,
31
(
S2
), pp.
3763
3771
.
31.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
32.
Guo
,
T.
,
Wang
,
Y.
,
Du
,
Z.
,
Chen
,
M.
,
Liu
,
D.
,
Liu
,
X.
, and
Rui
,
Z*
,
2021
, “
Evaluation of Coated Proppant Unconventional Performance
,”
Energy Fuel
,
35
(
11
), pp.
9268
9277
.
33.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
42
(
7
), pp.
597
629
.
You do not currently have access to this content.