Abstract

Several core-flooding-based experimental studies demonstrated the effect of calcium and magnesium ions and it is found that these hard ions have detrimental effects on oil recovery during chemical-enhanced oil recovery operations. However, studies regarding the coupled effect of hard ions and surfactant adsorption are very limited. Thus, this study aims to present a novel approach that can capture mineral-brine, brine-oil, and brine-surfactant interactions in the presence of hard ions (Ca2+ and Mg2+). Also, we introduced four oil-surfactant-based surface complexation geochemical reactions (SCGR) in the presence of hard ions for the first time to analyze the oil-surfactant interactions. The developed thermodynamic-based geochemical model is compared and validated with recent core-flooding data. Our results illustrate that the use of oil-surfactant SCGR is important and should be captured for detailed surfactant adsorption. Thus, we observed that in the presence of hard ions, surfactant adsorption increases with the increase in temperature, which is due to the surge in kinetic energy. We also observed that a reduction in hardness reduces the adsorption of surfactants. Additionally, increasing surfactant concentration led to a minor increase in the adsorption of surfactant with a significant increase in its concentration in the discharge/effluent. Therefore, the hard ions (Ca2+ and Mg2+) concentration has a substantial negative effect, as they reduce the solubility of surfactant and increase its adsorption. Furthermore, the lowest level of surfactant adsorption was accomplished by injecting ten times diluted water (<0.070 mg/g).

References

1.
Saha
,
R.
,
Tiwari
,
P.
, and
Uppaluri
,
R. V. S.
,
2021
,
Chemical Nanofluids in Enhanced Oil Recovery: Fundamentals and Applications
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
2.
Khurshid
,
I.
, and
Afgan
,
I.
,
2022
, “
Geochemical Investigation of Electrical Conductivity and Electrical Double Layer Based Wettability Alteration During Engineered Water Injection in Carbonates
,”
J. Pet. Sci. Eng.
,
215
, p.
110627
.
3.
Song
,
Y.
,
Xu
,
Y.
, and
Wang
,
Z.
,
2022
, “
An Experimental Study on Efficient Demulsification for Produced Emulsion in Alkaline/Surfactant/Polymer Flooding
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
093001
.
4.
Khurshid
,
I.
,
Fujii
,
Y.
, and
Choe
,
J.
,
2015
, “
Analytical Model to Determine CO2 Injection Time in a Reservoir for Optimizing its Storage and Oil Recovery: A Reservoir Compaction Approach
,”
J. Pet. Sci. Eng.
,
135
, pp.
240
245
.
5.
Sheng
,
J. J.
,
2011
,
Modern Chemical Enhanced Oil Recovery—Theory and Practice
,
Gulf Professional Publishing
,
Burlington, MA
.
6.
Winsor
,
P. A.
,
1954
,
Solvent Properties of Amphiphilic Compounds
,
Butterworths
,
London
.
7.
Yang
,
H.
,
Christopher
,
B.
,
Liyanage
,
P.
,
Solairaj
,
S.
,
Kim
,
D. H.
,
Nguyen
,
Q.
,
Weerasooriya
,
U.
, and
Pope
,
G. A.
,
2010
, “
Low-Cost, High-Performance Chemicals for Enhanced Oil Recovery
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
, Paper No. SPE 129978.
8.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Al-Ameri
,
W.
,
2020
, “
Influence of Water Composition on Formation Damage and Related Oil Recovery in Carbonates: A Geochemical Study
,”
J. Pet. Sci. Eng.
,
195
, p.
107715
.
9.
Khurshid
,
I.
, and
Afgan
,
I.
,
2021
, “
Investigation of Water Composition on Formation Damage and Related Energy Recovery From Geothermal Reservoirs: Geochemical and Geomechanical Insights
,”
Energies
,
14
(
21
), p.
7415
.
10.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Al-Ameri
,
W.
,
2022
, “
Geochemical Investigation of Water Composition Effect on Formation Damage and Related Oil Recovery in Carbonates
,”
SPE Conference at Oman Petroleum & Energy Show
, Paper No. SPE 200249-MS.
11.
Mohamed
,
I. M.
,
Block
,
G. I.
,
Abou-Sayed
,
O. A.
,
Elkatatny
,
S. M.
, and
Abou-Sayed
,
A. S.
,
2016
, “
Flow Rate-Dependent Skin in Water Disposal Injection Well
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052906
.
12.
Khurshid
,
I.
, and
Afgan
,
I.
,
2021
, “
Geochemical Investigation of CO2 Injection in Oil and Gas Reservoirs of Middle East to Estimate the Formation Damage and Related Oil Recovery
,”
Energies
,
14
(
22
), p.
7676
.
13.
Khurshid
,
I.
, and
Fujii
,
Y.
,
2021
, “
Geomechanical Analysis of Formation Deformation and Permeability Enhancement Due to Low-Temperature CO2 Injection in Subsurface Oil Reservoirs
,”
J. Pet. Explor. Prod. Technol.
,
11
(
4
), pp.
1915
1923
.
14.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Al-Attar
,
H.
, and
Alneaimi
,
A.
,
2020
, “
Analysis of Fracture Choking Due to Asphaltene Deposition in Fractured Reservoirs and Its Effect on Productivity
,”
J. Pet. Explor. Prod. Technol.
,
10
(
8
), pp.
3377
3387
.
15.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Afgan
,
I.
, and
Al-Attar
,
2022
, “
A Numerical Approach to Investigate the Impact of Acid-Asphaltene Sludge Formation on Worm-Holing During Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063001
.
16.
Kalam
,
S.
,
Abu-Khamsin
,
S. A.
,
Kamal
,
M. S.
, and
Patil
,
S.
,
2021
, “
A Review on Surfactant Retention on Rocks: Mechanisms, Measurements, and Influencing Factors
,”
Fuel J.
,
293
, p.
120459
.
17.
Zhang
,
W.
,
Hou
,
J.
,
Liu
,
Y.
,
Cao
,
W.
,
Zhou
,
K.
, and
Du
,
Q.
,
2022
, “
Effect of Interfacial Tension on Relative Permeability Curves Obtained by Considering Surfactant Adsorption and Diffusion
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
123006
.
18.
.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Imran
A.
,
2022
.
New Insights Into Surfactant Adsorption Estimation in Carbonates Under Harsh Conditions Using Surface Complexation Modeling
,
SPE Reservoir Evaluation & Engineering
, Paper No. SPE 207912-PA, pp.
1
17
.
19.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Afgan
,
I.
,
2021
, “
New Insights Into Surfactant Adsorption Estimation During ASP Flooding in Carbonates Under Harsh Conditions Using Surface Complexation Modeling
,”
Abu Dhabi International Petroleum and Conference
,
Abu Dhabi, UAE
, Paper No. SPE 207912.
20.
Hirasaki
,
G.
,
Miller
,
C. A.
, and
Puerto
,
M.
,
2011
, “
Recent Advances in Surfactant EOR
,”
SPE J.
,
16
(
4
), pp.
889
907
.
21.
Nasr-El-Din
,
H. A.
,
2005
, “
Formation Damage Induced by Chemical Treatments: Case Histories
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
214
224
.
22.
Tagavifar
,
M.
,
Sharma
,
H.
,
Wang
,
D.
,
Jang
,
S. H.
, and
Pope
,
G. A.
,
2018
, “
Alkaline/Surfactant/Polymer Flooding With Sodium Hydroxide in Indiana Limestone: Analysis of Water/Rock Interactions and Surfactant Adsorption
,”
SPE J.
,
23
(
6
), pp.
2279
2301
.
23.
Wang
,
D.
,
2018
, “
Surfactant Retention in Limestone
,”
Master’s thesis
,
The University of Texas at Austin
,
Austin, TX
.
24.
Arvidson
,
R. S.
,
Ertan
,
I. E.
,
Amonette
,
J. E.
, and
Luttge
,
A.
,
2003
, “
Variation in Calcite Dissolution Rates: A Fundamental Problem?
,”
Geochim. Cosmochim. Acta
,
67
(
9
), pp.
1623
1634
.
25.
Kosmulski
,
M.
,
2002
, “
The pH-Dependent Surface Charging and the Points of Zero Charge
,”
J. Colloid Interface Sci.
,
253
(
1
), pp.
77
87
.
26.
Stumm
,
W.
, and
Morgan
,
J. J.
,
2012
,
Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
, 3rd ed.,
John Wiley & Sons
,
Canada
.
27.
Na
,
C.
,
Kendall
,
T. A.
, and
Martin
,
S. T.
,
2007
, “
Surface-Potential Heterogeneity of Reacted Calcite and Rhodochrosite
,”
Environ. Sci. Technol.
,
41
(
18
), pp.
6491
6497
.
28.
Chen
,
L.
,
Zhang
,
G.
,
Wang
,
L.
,
Wu
,
W.
, and
Ge
,
J.
,
2014
, “
Zeta Potential of Limestone in a Large Range of Salinity
,”
Colloids Surf., A
,
450
, pp.
1
8
.
29.
Kasha
,
A.
,
Al-Hashim
,
H.
,
Abdallah
,
W.
,
Taherian
,
R.
, and
Sauerer
,
B.
,
2015
, “
Effect of Ca2+, Mg2+, and SO42− Ions on the Zeta Potential of Calcite and Dolomite Particles Aged With Stearic Acid
,”
Colloids Surf., A
,
482
(
5
), pp.
290
299
.
30.
Mahani
,
H.
,
Keya
,
A. L.
,
Berg
,
S.
, and
Nasralla
,
R.
,
2017
, “
Electrokinetics of Carbonate/Brine Interface in Low-Salinity Waterflooding: Effect of Brine Salinity, Composition, Rock Type, and pH on ζ-Potential and a Surface-Complexation Model
,”
SPE J.
,
22
(
1
), pp.
53
68
.
31.
Barati-Harooni
,
A.
,
Najafi-Marghmaleki
,
A.
,
Hosseini
,
S. M.
, and
Moradi
,
S.
,
2017
, “
Experimental Investigation of Dynamic Adsorption–Desorption of New Nonionic Surfactant on Carbonate Rock: Application to Enhanced Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042202
.
32.
Khurshid
,
I.
, and
Choe
,
J.
,
2015
, “
Analysis of Asphaltene Deposition, Carbonate Precipitation, and Their Cementation in Depleted Reservoirs During CO2 Injection
,”
Greenhouse Gases: Sci. Technol.
,
5
(
5
), pp.
657
667
.
33.
Khurshid
,
I.
, and
Choe
,
J.
,
2018
, “
An Analytical Model for Re-Dissolution of Deposited Asphaltene in Porous Media During CO2 Injection
,”
Int. J. Oil, Gas Coal Technol.
,
18
(
3–4
), pp.
338
352
.
34.
Khurshid
,
I.
, and
Choe
,
J.
,
2016
, “
Analysis of Carbon Dioxide Temperature, Its Thermal Disturbance, and Evaluating the Formation Damages During Its Injection in Shallow, Deep, and High-Temperature Reservoirs
,”
Int. J. Oil, Gas Coal Technol.
,
11
(
2
), pp.
141
153
.
35.
Khurshid
,
I.
,
Al-Attar
,
H.
, and
Alraeesi
,
A. R.
,
2018
, “
Modeling Cementation in Porous Media During Waterflooding: Asphaltene Deposition, Formation Dissolution, and Their Cementation
,”
J. Pet. Sci. Eng.
,
161
, pp.
359
367
.
36.
Sharma
,
H.
,
Dufour
,
S.
,
Arachchilage
,
G. W. P.
,
Weerasooriya
,
U.
,
Pope
,
G. A.
, and
Mohanty
,
K.
,
2015
, “
Alternative Alkalis for ASP Flooding in Anhydrite Containing Oil Reservoirs
,”
Fuel
,
140
, pp.
407
420
.
37.
Yassin
,
M. R.
,
Ayatollahi
,
S.
,
Rostami
,
B.
,
Hassani
,
K.
, and
Taghikhani
,
V.
,
2015
, “
Micro-Emulsion Phase Behavior of a Cationic Surfactant at Intermediate Interfacial Tension in Sandstone and Carbonate Rocks
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012905
.
38.
Southwick
,
J. G.
,
van den Pol
,
E.
,
Rijn
,
C. H. T.
,
Batenburg
,
D. W.
,
Boersma
,
D.
,
Svec
,
Y.
,
Mastan
,
A.
,
Shahin
,
G.
, and
Raney
,
K.
,
2016
, “
Ammonia as Alkali for Alkaline/Surfactant/Polymer Floods
,”
SPE J.
,
21
(
1
), pp.
10
21
.
39.
Parkhurst
,
D. L.
, and
Appelo
,
C. A. J.
,
2016
,
User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction One-Dimensional Transport, and Inverse Geochemical Calculations
.
40.
Davis
,
J. A.
, and
Kent
,
D. B.
,
1990
, “
Surface Complexation Modeling in Aqueous Geochemistry
,”
Rev. Mineral. Geochem.
,
23
(
1
), pp.
177
260
.
41.
Hirasaki
,
G.
,
1991
, “
Wettability: Fundamentals and Surface Forces
,”
SPE Form. Eval.
,
6
(
2
), pp.
217
226
.
42.
Van Cappellen
,
P.
,
Charlet
,
L.
,
Stumm
,
W.
, and
Wersin
,
P.
,
1993
, “
A Surface Complexation Model of the Carbonate Mineral-Aqueous Solution Interface
,”
Geochem. Cosmochim. Acta
,
57
(
15
), pp.
3505
3518
.
43.
Abu-Alsaud
,
M.
,
Al Ghamdi
,
A.
,
Ayirala
,
S.
, and
Al Sofi
,
A.
,
2021
, “
Surface Complexation Modeling of Smartwater Synergy With EOR in Carbonates
,”
European Symposium on Improved Oil Recovery
,
Online
,
Apr. 19–22
, pp.
1
16
.
44.
Sanaei
,
A.
,
Tavassoli
,
S.
, and
Sepehrnoori
,
K.
,
2019
, “
Investigation of Modified Water Chemistry for Improved Oil Recovery: Application of DLVO Theory and Surface Complexation Model
,”
Colloids Surf., A
,
574
, pp.
131
145
.
45.
Rego
,
F. B.
,
Mehrabi
,
M.
,
Sanaei
,
A.
, and
Sepehrnoori
,
K.
,
2021
, “
Improvements on Modeling Wettability Alteration by Engineered Water Injection: Surface Complexation at the Oil/Brine/Rock Contact
,”
Fuel
,
284
, p.
118991
.
46.
Brady
,
P. V.
, and
Thyne
,
G.
,
2016
, “
Functional Wettability in Carbonate Reservoir
,”
Energy Fuels
,
30
(
11
), pp.
9217
9225
.
47.
Elakneswaran
,
Y.
,
Shimokawara
,
M.
,
Nawa
,
T.
, and
Takahashi
,
S.
,
2017
, “
Surface Complexation and Equilibrium Modelling for Low Salinity Waterflooding in Sandstone Reservoirs
,”
Abu Dhabi International Petroleum and Conference
,
Abu Dhabi, UAE
, Paper No. SPE 188621.
48.
Khurshid
,
I.
, and
Al-Shalabi
,
E. W.
,
2022
, “
New Insights Into Modeling Disjoining Pressure and Wettability Alteration by Engineered Water: Surface Complexation Based Rock Composition Study
,”
J. Pet. Sci. Eng.
,
208
, p.
1096584
.
49.
Khurshid
,
I.
, and
Afgan
,
I.
,
2022
, “
Novel Insights Into the Geochemical Evaluation of Polymer Drive Composition on Surfactant Retention in Carbonates Using the Surface Complexation Modeling
,”
Sci. Rep. Nat.
,
12
(
1
), p.
17542
.
50.
Khurshid
,
I.
,
Lee
,
K. J.
, and
Choe
,
J.
,
2013
, “
Analyses of Thermal Disturbance in Drilling Deep and High-Temperature Formations
,”
Energy Sources, Part A
,
35
(
16
), pp.
1487
1497
.
51.
Kamal
,
M. S.
,
Hussein
,
I. A.
, and
Sultan
,
A. S.
,
2017
, “
Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications
,”
Energy Fuels
,
31
(
8
), pp.
7701
7720
.
52.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Afgan
,
I.
,
Khurshid
,
B.
, and
Hassan
,
A. M.
,
2023
, “
Geochemical Modeling of Engineered Water Injection in Carbonates Under Harsh Conditions: New Insights With Ionic Adsorption
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
023004
.
53.
Belhaj
,
A. F.
,
Elraies
,
K. A.
,
Mahmood
,
S. M.
,
Zulkifli
,
N. N.
,
Akbari
,
S.
, and
Hussein
,
O. S.
,
2020
, “
The Effect of Surfactant Concentration, Salinity, Temperature, and pH on Surfactant Adsorption for Chemical Enhanced Oil Recovery: A Review
,”
J. Pet. Exp. Prod. Technol.
,
10
(
1
), pp.
125
137
.
You do not currently have access to this content.