Abstract

Land is a limited commodity that has always been fought over. Its use and allocation for various purposes have been the subject of much debate and for good reason. It is necessary for most industries. It is becoming more and more a topic of conversation as available land is used up. This review article explores land competition as it relates to the production of food and energy, as well as the ramifications of taking natural land and converting it to human use for these purposes. It also discusses the policies that some countries are enacting to deal with the ever-shrinking availability of free land and ways that society can decrease the necessity for more land.

References

1.
Lambin
,
E. F.
, and
Mayfroidt
,
P.
,
2011
, “
Global Land Use Change, Economic Globalization, and the Looming Land Scarcity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
9
), pp.
3465
3472
.
2.
Goldewijk
,
K. K.
,
2001
, “
Estimating Global Land Use Change Over the Past 300 Years: The HYDE Database
,”
Global Biogeochem. Cycles
,
15
(
2
), pp.
417
433
.
3.
Dijk
,
M. V.
,
Morley
,
T.
,
Rau
,
M. L.
, and
Saghai
,
Y.
,
2021
, “
A Meta-analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050
,”
Nat. Food
,
2
(
7
), pp.
494
501
.
4.
Department of Economic and Social Affairs Population Division, N. Y. United Nations
,
2019
, “
World Population Prospects 2019
,” https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf, Accessed September 21, 2021.
5.
Sans
,
P.
, and
Combris
,
P.
,
2015
, “
World Meat Consumption Patterns: An Overview of the Last Fifty Years (1961–2011)
,”
Meat Sci.
,
109
, pp.
106
111
.
6.
Webb
,
P.
,
Stordalen
,
G. A.
,
Singh
,
S.
,
Wijesinha-Bettoni
,
R.
,
Shetty
,
P.
, and
Lartey
,
A.
,
2018
, “
Hunger and Malnutrition in the 21st Century
,”
BMJ
,
361
, p.
k2238
.
7.
Wirsenius
,
S.
,
Azar
,
C.
, and
Berndes
,
G.
,
2010
, “
How Much Land Is Needed for Global Food Production Under Scenarios of Dietary Changes and Livestock Productivity Increases in 2030?
,”
Agric. Syst.
,
103
(
9
), pp.
621
638
.
8.
McLeman
,
R. A.
,
Dupre
,
J.
,
Ford
,
L. B.
,
Ford
,
J.
,
Gajewski
,
K.
, and
Marchildon
,
G.
,
2014
, “
What We Learned from the Dust Bowl: Lessons in Science, Policy, and Adaptation
,”
Popul. Environ.
,
35
(
4
), pp.
417
440
.
9.
Eise
,
J.
, and
Foster
,
K. E.
,
2018
,
How to Feed the World
, Vol.
361
,
Island Press
,
Washington, DC
.
10.
Gibbs
,
H. K.
,
Ruesch
,
A. S.
,
Achard
,
F.
,
Clayton
,
M. K.
,
Holmgren
,
P.
,
Ramankutty
,
N.
, and
Foley
,
J. A.
,
2010
, “
Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980s and 1990s
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
38
), pp.
16732
16737
.
11.
Baccini
,
A.
,
Goetz
,
S. J.
,
Walker
,
W. S.
,
Laporte
,
N. T.
,
Sun
,
M.
,
Sulla-Menashe
,
D.
,
Hackler
,
J.
, et al
,
2012
, “
Estimated Carbon Dioxide Emissions From Tropical Deforestation Improved by Carbon Density Maps
,”
Nat. Clim. Change
,
2
(
3
), pp.
182
185
.
12.
Hart
,
J. F.
,
2010
, “
Half a Century of Cropland Change
,”
Geogr. Rev.
,
91
(
3
), pp.
525
541
.
13.
Ahearn
,
M.
,
Yee
,
J.
,
Ball
,
E.
, and
Nehring
,
R.
,
1998
,
Agricultural Productivity in the United States
, Vol.
740
,
United States Department of Agriculture, Resource Economics Division, Economic Research Service, Agriculture Information Bulletin
,
Washington, DC
.
14.
Mahmood
,
I.
,
Imadi
,
S. R.
,
Shazadi
,
K.
,
Gul
,
A.
, and
Hakeem
,
K. R.
,
2016
, “
Effects of Pesticides on Environment
,”
Plant Soil Microbes
,
1
, pp.
253
269
.
15.
Turusov
,
V.
,
Rakitsky
,
V.
, and
Tomatis
,
L.
,
2002
, “
Dichlorodiphenyltrichloroethane (DDT): Ubiquity, Persistence, and Risks
,”
Environ. Health Perspect.
,
110
(
2
), pp.
125
128
.
16.
Sharpe
,
P. B.
, and
Garcelon
,
D. K.
,
2003
, “
Restoring and Monitoring Bald Eagles in Southern California: The Legacy of DDT
,”
Proceedings of the Sixth California Islands Symposium
,
Ventura, CA
,
Dec. 1–3
.
17.
Poudel
,
S.
,
Poudel
,
B.
,
Acharya
,
B.
, and
Poudel
,
P.
,
2020
, “
Pesticide Use and Its Impacts on Human Health and Environment
,”
Environ. Ecosyst. Sci.
,
4
(
1
), pp.
47
51
.
18.
Alavanja
,
M. C. R.
,
Hoppin
,
J. A.
, and
Kamel
,
F.
,
2004
, “
Health Effects of Chronic Pesticide Exposure: Cancer and Neurotoxicity
,”
Annu. Rev. Public Health
,
25
(
1
), pp.
155
197
.
19.
Stewart
,
W. M.
,
Dibb
,
D. W.
,
Johnston
,
A. E.
, and
Smyth
,
T. J.
,
2005
, https://acsess.onlinelibrary.wiley.com/doi/epdf/10.2134/agronj2005.0001, Accessed September 21, 2021.
20.
Ayoub
,
A. T.
,
1999
, “
Fertilizers and the Environment
,”
Nutr. Cycling Agroecosyst.
,
55
(
2
), pp.
117
121
.
21.
Wang
,
J.
,
Chen
,
Y.
,
Shao
,
X.
,
Zhang
,
Y.
, and
Cao
,
Y.
,
2012
, “
Land-Use Change and Policy Dimension Driving Forces in China: Present, Trend and Future
,”
Land Use Policy
,
29
(
4
), pp.
737
749
.
22.
Wang
,
W.
,
Liang
,
T.
,
Wang
,
L.
,
Liu
,
Y.
,
Wang
,
Y.
, and
Zheng
,
C.
,
2012
, “
The Effects of Fertilizer Applications on Runoff Loss of Phosphorus
,”
Environ. Earth Sci.
,
68
(
5
), pp.
1313
1319
.
23.
Driver
,
J. G.
,
Owen
,
R. E.
,
Makanyire
,
T.
,
Lake
,
J. A.
,
McGregor
,
J.
, and
Styring
,
P.
,
2019
, “
Blue Urea: Fertilizer With Reduced Environmental Impacts
,”
Front. Energy Resour.
,
7
, p.
88
.
24.
Chassy
,
B. M.
,
2007
, “
The History and Future of GMOs in Food and Agriculture
,”
Cereal Foods World
,
54
(
4
), pp.
169
172
.
25.
Oliver
,
M. J.
,
2014
, “
Why We Need GMO Crops in Agriculture
,” https://pubmed.ncbi.nlm.nih.gov/25665234/, Accessed September 22, 2021.
26.
Duke
,
S. O.
, and
Powles
,
S. B.
,
2009
, “
Glyphosate-Resistant Crops and Weeds: Now and in the Future
,” https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/6923/GlyphosateResistantCrops.pdf?sequence=1&isAllowed=y, Accessed September 22, 2021.
27.
Yang
,
Y. T.
, and
Chen
,
B.
,
2016
, “
Governing GMOs in the USA: Science, Law, and Public Health
,”
J. Sci. Food Agric.
,
96
(
6
), pp.
1851
1855
.
28.
Vecchione
,
M.
,
Feldman
,
C.
, and
Wunderlich
,
S.
,
2014
, “
Consumer Knowledge and Attitudes About Genetically Modified Food Products and Labelling Policy
,”
Int. J. Food Sci. Nutr.
,
66
(
3
), pp.
329
335
.
29.
Roberts
,
M.
,
2000
, “
US Animal Agriculture: Making the Case for Productivity
,” https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/456/US%20ANIMAL%20AGRICULTURE%20MAKING%20THE%20CASE%20FOR%20PRODUCTIVITY.pdf?sequence=1&isAllowed=y, Accessed September 22, 2021.
30.
Batistel
,
F.
,
Arroyo
,
F. M.
,
Bellingeri
,
A.
,
Wang
,
L.
,
Saremi
,
B.
,
Parys
,
C.
,
Trevisi
,
E.
,
Cardoso
,
F. C.
, and
Loor
,
J. J.
,
2017
, “
Ethyl-Cellulose Rumen-Protected Methionine Enhances Performance During the Periparturient Period and Early Lactation in Holstein Dairy Cows
,”
J. Dairy Sci.
,
100
(
9
), pp.
7455
7467
.
31.
Dohoo
,
I. R.
,
Leslie
,
K.
,
DesCoteaux
,
L.
,
Fredeen
,
A.
,
Dowling
,
P.
,
Preston
,
A.
, and
Shewfelt
,
W.
,
2003
, “
A Meta-Analysis of Effects of Recombinant Bovine Somatotropin 1. Methodology and Effects on Production
,” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC280708/, Accessed September 22, 2021.
32.
Collier
,
R. J.
, and
Bauman
,
D. E.
,
2014
, “
Update on Human Health Concerns of Recombinant Bovine Somatotropin Use in Dairy Cows
,”
J. Anim. Sci.
,
92
(
4
), pp.
1800
1807
.
33.
Gillespie
,
J.
,
Nehring
,
R.
, and
Sitienei
,
I.
,
2004
, “
The Adoption of Technologies, Management Practices, and Production Systems in U.S. Milk Production
,”
Agric. Food Econ.
,
2
(
1
), p.
17
.
34.
Sneeringer
,
S.
,
MacDonald
,
J. M.
,
Key
,
N.
,
McBride
,
W. D.
, and
Mathews
,
K.
,
2015
, “
Economics of Antibiotic Use in U.S. Livestock Production
.”
35.
Chattopadhyay
,
M. K.
,
2014
, “
Use of Antibiotics as Feed Additives: A Burning Question
,”
Front. Microbiol.
,
5
, p.
334
.
36.
Dutta
,
T. K.
,
Yadav
,
S. K.
, and
Chatterjee
,
A.
,
2019
, “
Antibiotics as Feed Additives for Livestock: Human Health Concerns
,”
Indian J. Anim. Health
,
58
(
2
), pp.
121
136
.
37.
Fabiosa
,
J. F.
,
2009
, “
Land-Use Credits to Corn Ethanol: Accounting for Distillers Dried Grains With Solubles as a Feed Substitute in Swine Rations
,” https://lib.dr.iastate.edu/card_workingpapers/533, Accessed September 29, 2021.
38.
Rabés
,
A.
,
Seconda
,
L.
,
Langevin
,
B.
,
Allès
,
B.
,
Touvier
,
M.
,
Hercberg
,
S.
,
Lairon
,
D.
,
Baudry
,
J.
,
Pointereau
,
P.
, and
Kesse-Guyot
,
E.
,
2020
, “
Greenhouse Gas Emissions, Energy Demand and Land Use Associated With Omnivorous, Pesco-Vegetarian, Vegetarian, and Vegan Diets Accounting for Farming Practices
,”
Sustainable Prod. Consum.
,
22
, pp.
138
146
.
39.
Kernebeek
,
H. R. J. V.
,
Oosting
,
S. J.
,
Ittersum
,
M. K. V.
,
Bikker
,
P.
, and
Boer
,
I. J. M. D.
,
2016
, “
Saving Land to Feed a Growing Population: Consequences of Crop and Livestock Products
,”
Int. J. Life Cycle Assess
,
21
(
5
), pp.
677
687
.
40.
Meemken
,
E.
, and
Qaim
,
M.
,
2018
, “
Organic Agriculture, Food Security, and the Environment
,”
Annu. Rev. Resour. Econ.
,
10
(
1
), pp.
39
63
.
41.
Drejerska
,
N.
,
Sobczak
,
W.
,
Golebiewski
,
J.
, and
Gierula
,
W. A.
,
2021
, “
Does Organic Mean Health for Consumers? Selected Issues of Organic Food Market
,”
Br. Food J.
,
123
(
8
), pp.
2622
2640
.
42.
Fuglie
,
K.
, and
Wang
,
S. L.
,
2012
, “
Productivity Growth in Global Agriculture Shifting to Developing Countries
,” https://www.jstor.org/stable/10.2307/choices.27.4.09, Accessed September 21, 2021.
43.
Denning
,
G.
,
Kabambe
,
P.
,
Sanchez
,
P.
,
Malik
,
A.
,
Flor
,
R.
,
Harawa
,
R.
,
Nkhoma
,
P.
, et al
,
2009
, “
Input Subsidies to Improve Smallholder Maize Productivity in Malawi: Toward and African Green Revolution
,”
PLoS Biol.
,
7
(
1
), pp.
2
10
.
44.
Damba
,
O. T.
,
Ansah
,
I. G. K.
,
Donkoh
,
S. A.
,
Alhassan
,
A.
,
Mullins
,
G. R.
,
Yussif
,
K.
,
Taylor
,
M. S.
,
Tetteh
,
B. K. D.
, and
Appiah-Twumasi
,
M.
,
2020
, “
Effects of Technology Dissemination Approaches on Agricultural Technology Uptake and Utilization in Northern Ghana
,”
Technol. Soc.
,
62
, p.
101294
.
45.
Fuglie
,
K.
, and
Rada
,
N.
,
2013
, “
Resources, Policies, and Agricultural Productivity in Sub-Saharan Africa
.”
46.
Ezeh
,
A. C.
,
Bongaarts
,
J.
, and
Mberu
,
B.
,
2012
, “
Global Population Trends and Policy Options
,”
Lancet
,
380
(
9837
), pp.
142
148
.
47.
Team
,
C. W.
,
Pachauri
,
R. K.
, and
Reisinger
,
A.
,
2007
, “
Climate Change 2007: Synthesis Report
,”
Geneva, Switzerland
.
48.
Valentine
,
J.
,
Clifton-Brown
,
J.
,
Hastings
,
A.
,
Robson
,
P.
,
Allison
,
G.
, and
Smith
,
P.
,
2012
, “
Food vs. Fuel: The Use of Land for Lignocellulosic ‘Next Generation’ Energy Crops That Minimize Competition With Primary Food Production
,”
GCB Bioenergy
,
4
(
1
), pp.
1
19
.
49.
Fritsche
,
U.
,
Sims
,
R.
, and
Monti
,
A.
,
2010
, “
Direct and Indirect Land-Use Competition Issues for Energy Crops and Their Sustainable Production—An Overview
,”
Biofuels Bioprod. Biorefining
,
4
(
6
), pp.
692
704
.
50.
Veldkamp
,
E. L.
,
2001
, “
Predicting Land-Use Change
,”
Agric. Ecosyst. Environ.
,
85
(
1–3
), pp.
1
6
.
51.
Chu
,
S.
,
2009
, “
Carbon Capture and Sequestration
,”
Science
,
325
(
5948
), p.
1599
.
52.
Groesbeck
,
J. G.
, and
Pearce
,
J. M.
,
2018
, “
Coal With Carbon Capture and Sequestration Is Not as Land Use Efficient as Solar Photovoltaic Technology for Climate Neutral Electricity Production
,”
Sci. Rep.
,
8
(
1
), pp.
1
17
.
53.
Yeh
,
S.
,
Jordaan
,
S. M.
,
Brandt
,
A. R.
,
Turetsky
,
M. R.
,
Spatari
,
S.
, and
Keith
,
D. W.
,
2010
, “
Land Use Greenhouse Gas Emissions From Conventional Oil Production and Oil Sands
,”
Environ. Sci. Technol.
,
44
(
22
), pp.
8766
8772
.
54.
Finkel
,
M. L.
, and
Hays
,
J.
,
2013
, “
The Implications of Unconventional Drilling for Natural Gas: A Global Public Health Concern
,”
Public Health
,
127
(
10
), pp.
889
893
.
55.
Dale
,
V. H.
,
Effroymson
,
R. A.
, and
Kline
,
K. L.
,
2011
, “
The Land Use–Climate Change–Energy Nexus
,”
Landsc. Ecol.
,
26
(
6
), pp.
755
773
.
56.
Brook
,
B. W.
,
Alonso
,
A.
,
Meneley
,
D. A.
,
Misak
,
J.
,
Blees
,
T.
, and
van Erp
,
J. B.
,
2014
, “
Why Nuclear Energy Is Sustainable and Has to Be Part of the Energy Mix
,”
Sustainable Mater. Technol.
,
1–2
, pp.
8
16
.
57.
Ingram
,
J. C.
,
Jones
,
L.
,
Credo
,
J.
, and
Rock
,
T.
,
2020
, “
Uranium and Arsenic Unregulated Water Issues on Navajo Lands
,”
J. Vac. Sci. Technol. A: Vac. Surf. Films
,
38
(
3
), p.
031003
.
58.
Abdelouas
,
A.
,
2006
, “
Uranium Mill Tailings: Geochemistry, Mineralogy, and Environmental Impact
,”
Elements
,
2
(
6
), pp.
335
341
.
59.
Pavliuk
,
A. O.
,
Kotlyarevskiy
,
S. G.
,
Bespala
,
E. V.
,
Zakharova
,
E. V.
,
Ermolaev
,
V. M.
, and
Volkova
,
A. G.
,
2018
, “
Experience of On-Site Disposal of Production Uranium-Graphite Nuclear Reactor
,”
J. Environ. Radioact.
,
184
, pp.
22
31
.
60.
Van de Ven
,
D.
,
Capellan-Peréz
,
I.
,
Arto
,
I.
,
Cazcarro
,
I.
,
de Castro
,
C.
,
Patel
,
P.
, and
Gonzalez-Eguino
,
M.
,
2021
, “
The Potential Land Requirements and Related Land Use Change Emissions of Solar Energy
,”
Sci. Rep.
,
11
(
1
), p.
2907
.
61.
Jones
,
N. F.
,
Pejchar
,
L.
, and
Kiesecker
,
J. M.
,
2015
, “
The Energy Footprint: How Oil, Natural Gas, and Wind Energy Affect Land for Biodiversity and the Flow of Ecosystem Services
,”
BioScience
,
65
(
3
), pp.
290
301
.
62.
Dupont
,
E.
,
Koppelaar
,
R.
, and
Jeanmart
,
H.
,
2020
, “
Global Available Solar Energy Under Physical and Energy Return on Investment Constraints
,”
Appl. Energy
,
257
, p.
113968
.
63.
Hernandez
,
R.
,
Hoffacker
,
M.
, and
Field
,
C.
,
2014
, “
Land-Use Efficiency of Big Solar
,”
Environ. Sci. Technol.
,
48
(
2
), pp.
1315
1323
.
64.
De Castro
,
C.
,
Mediavilla
,
M.
,
Miguel
,
L.
, and
Frechoso
,
F.
,
2013
, “
Global Solar Electric Potential: A Review of Their Technical and Sustainable Limits
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
824
835
.
65.
Drew
,
B.
,
Plummer
,
A. R.
, and
Sahinkaya
,
M. N.
,
2009
, “
A Review of Wave Energy Converter Technology
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
223
(
8
), pp.
887
902
.
66.
Dhar
,
A.
,
Naeth
,
M.
,
Jennings
,
P.
, and
Gamal El-Din
,
M.
,
2020
, “
Geothermal Energy Resources: Potential Environmental Impact and Land Reclamation
,”
Environ. Rev.
,
28
(
4
).
67.
Pasqualetti
,
M.
,
2000
, “
Morality, Space, and the Power of Wind Energy Landscapes
,”
Geogr. Rev.
,
90
(
3
), pp.
381
394
.
68.
Miller
,
L. M.
, and
Keith
,
D. W.
,
2018
, “
Climatic Impacts of Wind Power
,”
Joule
,
2
(
12
), pp.
2618
2632
.
69.
Martinez-Martinez
,
Y.
,
Dewulf
,
J.
,
Aguayo
,
M.
, and
Casas-Ledon
,
Y.
,
2023
, “
Sustainable Wind Energy Planning Through Ecosystem Service Impact Valuation and Exergy: A Study Case in South-Central Chile
,”
Renewable Sustainable Energy Rev.
,
178
, p.
113252
.
70.
Liu
,
P.
, and
Barlow
,
C.
,
2017
, “
Wind Turbine Blade Waste in 2050
,”
Waste Manage.
,
62
, pp.
229
240
.
71.
Bracmort
,
K.
,
2020
, “
The Renewable Fuel Standard (RFS): An Overview
,” https://www.everycrsreport.com/files/20200414_R43325_1981cda6b9497b16f7306b81d584cbcf91d4c801.pdf, Accessed September 29, 2021.
72.
Alalwan
,
H.
,
Alminshid
,
A.
, and
Aljaafari
,
H.
,
2019
, “
Promising Evolution of Biofuel Generations. Subject Review
,”
Renewable Energy Focus
,
28
, pp.
127
139
.
73.
Weng
,
Y.
,
Chang
,
S.
,
Cai
,
W.
, and
Wang
,
C.
,
2019
, “
Exploring the Impacts of Biofuel Expansion on Land Use Change and Food Security Based on a Land Explicit CGE Model: A Case Study of China
,”
Appl. Energy
,
236
, pp.
514
525
.
74.
Wise
,
T.
,
2012
, “
The Cost to Mexico of U.S. Corn Ethanol Expansion
,” https://ageconsearch.umn.edu/record/179098/, Accessed September 29, 2021.
75.
University of North Texas
,
2011
, “
National Research Council, Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy
,” https://lifelong.unt.edu/sites/default/files/EmeritusCollege/Spring2015/Handouts/Renewable-Fuel-Standard-Final.pdf, Accessed September 29, 2021.
76.
Crago
,
C. L.
,
Khanna
,
M.
,
Barton
,
J.
,
Giuliani
,
E.
, and
Amaral
,
W.
,
2010
, “
Competitiveness of Brazilian Sugarcane Ethanol Compared to US Corn Ethanol
,”
Energy Policy
,
38
(
11
), pp.
7404
7415
.
77.
Canabarro
,
N.
,
Silva-Ortiz
,
P.
,
Nogueira
,
L.
,
Cantarella
,
H.
, and
Maciel-Filho
,
R.
,
2023
, “
Sustainability Assessment of Ethanol and Biodiesel Production in Argentina, Brazil, Colombia, and Guatemala
,”
Renewable Sustainable Energy Rev.
,
171
, p.
113019
.
78.
Sedlàcek
,
T.
,
2011
, “
Impact of Environmental Factors to Wheat Ethanol Production in the Conditions of Central Europe
,”
Cereal Res. Commun.
,
39
(
1
), pp.
120
129
.
79.
Rösch
,
C.
,
Roßmann
,
M.
, and
Weickert
,
S.
,
2019
, “
Microalgae for Integrated Food and Fuel Production
,”
GCB Bioenergy
,
11
(
1
), pp.
326
334
.
80.
Wegener
,
D.
,
Kelly
,
J.
,
Wallace
,
L.
, and
Sawicki
,
V.
,
2014
, “
Public Opinions of Biofuels: Attitude Strength and Willingness to Use Biofuels
,”
Biofuels
,
5
(
3
), pp.
249
259
.
81.
Hasse
,
J. E.
, and
Lathrop
,
R. G.
,
2003
, “
Land Resource Impact Indicators of Urban Sprawl
,”
Appl. Geogr.
,
23
(
2–3
), pp.
159
175
.
82.
Natural Resources Conservation Service Summary Report 1997
,” Dec. 2000.
83.
Rimal
,
B.
,
Sloan
,
S.
,
Keshtkar
,
H.
,
Sharma
,
S.
,
Rijal
,
S.
, and
Shrestha
,
U. B.
,
2020
, “
Patterns of Historical and Future Urban Expansion in Nepal
,”
Remote Sens.
,
12
(
4
), p.
628
.
84.
Mar-Lopez
,
T.
,
Aide
,
T. M.
, and
Thomlinson
,
J. R.
,
2001
, “
Urban Expansion and the Loss of Prime Agricultural Lands in Puerto Rico
,”
Ambio: A. J. Hum. Environ.
,
30
(
1
), pp.
49
54
.
85.
Mazzocchi
,
C.
,
Sali
,
G.
, and
Corsi
,
S.
,
2013
, “
Land Use Conversion in Metropolitan Areas and the Permanence of Agriculture: Sensitivity Index of Agricultural Land (SIAL), a Tool for Territorial Analysis
,”
Land Use Policy
,
35
, pp.
155
162
.
86.
Brody
,
S.
,
Blessing
,
R.
,
Sebastian
,
A.
, and
Bedient
,
P.
,
2014
, “
Examining the Impact of Land Use/Land Cover Characteristics on Flood Losses
,”
J. Environ. Plan. Manage.
,
57
(
8
), pp.
1252
1265
.
87.
Heimlich
,
R. E.
, and
Anderson
,
W. D.
,
2001
, “
Development at the Urban Fringe and Beyond: Impacts on Agricultural and Rural Land
,” Washington, D.C.
88.
Shearer
,
H.
, and
Burton
,
P.
,
2019
, “
Towards a Typology of Tiny Houses
,”
Hous. Theory Soc.
,
36
(
3
), pp.
298
318
.
89.
Worlanyo
,
A. S.
, and
Jiangfeng
,
L.
,
2021
, “
Evaluating the Environmental and Economic Impact of Mining for Post-Mined Land Restoration and Land-Use: A Review
,”
J. Environ. Manage.
,
279
, p.
111623
.
90.
Lehmann
,
D.
,
Brinkmann
,
K.
,
Diogo
,
R. V. C.
, and
Buerkert
,
A.
,
2016
, “
Temporal and Spatial Changes of Land Use in Rare Earth Metal Mining Areas of Rwanda
,”
Int. J. Min. Reclam. Environ.
,
31
(
8
), pp.
519
529
.
91.
Onesimo
,
C. M. G.
,
Dias
,
D. D.
,
Beirao
,
M. V.
,
Kozovits
,
A. R.
, and
Messias
,
M. C. T. B.
,
2021
, “
Ecological Succession in Areas Degraded by Bauxite Mining Indicates Successful Use of Topsoil
,”
Restor. Ecol.
,
29
(
1
), pp.
1
11
.
92.
Grimaldi
,
M.
,
Guedron
,
S.
, and
Grimaldi
,
C.
,
2015
, “Impact of Gold Mining on Mercury Contamination and Soil Degradation in Amazonian Ecosystems of French Guiana,”
Land-Use Change Impacts on Soil Processes: Tropical and Savannah Ecosystems
,
F. Q.
Brearley
, and
A. D.
Thomas
, eds.,
CAB International
,
Oxfordshire, UK.
, pp.
95
104
.
93.
Fu
,
S.
,
Li
,
P.
,
Feng
,
Q.
,
Li
,
X.
,
Li
,
P.
,
Sun
,
Y.
, and
Chen
,
Y.
,
2011
, “
Soil Quality Degradation in Magnesite Mining Area
,”
Pedosphere
,
21
(
1
), pp.
98
106
.
94.
Ogunjinmi
,
A.
,
Sunday
,
O. R.
,
Ogunjinmi
,
K. O.
, and
Adekoya
,
O. E.
,
2016
, “
Influence of Social Media on Climate Change Knowledge and Concerns
,” https://www.researchgate.net/publication/312158825_INFLUENCE_OF_SOCIAL_MEDIA_ON_CLIMATE_CHANGE_KNOWLEDGE_AND_CONCERNS, Accessed November 11, 2021.
95.
96.
Clemencon
,
R.
,
2016
, “
The Two Sides of the Paris Climate Agreement: Dismal Failure or Historic Breakthrough?
,”
J. Environ. Dev.
,
25
(
1
), pp.
3
24
.
97.
Sælen
,
H.
,
Hovi
,
J.
,
Sprinz
,
D.
, and
Underdal
,
A.
,
2020
, “
How US Withdrawal Might Influence Cooperation Under the Paris Climate Agreement
,”
Environ. Sci. Policy
,
108
, pp.
121
132
.
98.
Friedlingstein
,
P.
,
O'sullivan
,
M.
,
Jones
,
M. W.
,
Andrew
,
R. M.
,
Hauck
,
J.
,
Olsen
,
A.
,
Peters
,
G. P.
, et al
,
2020
, “
Global Carbon Budget
,”
Earth Syst. Sci. Data
,
12
(
4
), pp.
3269
3340
.
99.
Rojas-Downing
,
M. M.
,
Nejadhashemi
,
A. P.
,
Harrigan
,
T.
, and
Woznicki
,
S. A.
,
2017
, “
Climate Change and Livestock: Impacts, Adaptation, and Mitigation
,”
Clim. Risk Manage.
,
16
, pp.
145
163
.
100.
Huang
,
J.
,
Zhang
,
G.
,
Zhang
,
Y.
,
Guan
,
X.
,
Wei
,
Y.
, and
Guo
,
R.
,
2020
, “
Global Desertification Vulnerability to Climate Change and Human Activities
,”
Land Degrad. Dev.
,
31
(
11
), pp.
1380
1391
.
101.
International Monetary Fund
,
2021
, “
Policy Responses to COVID-19
,” https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-COVID-19, Accessed November 11, 2021.
102.
Bernstein
,
A.
,
2021
, “
Coronavirus, Climate Change, and the Environment: A Conversation on COVID-19 with Dr. Aaron Bernstein, Director of Harvard Chan C-CHANGE
,” https://www.hsph.harvard.edu/c-change/subtopics/coronavirus-and-climate-change/, Accessed November 11, 2021.
103.
Tollefson
,
J.
,
2020
, “
Why Deforestation and Extinctions Make Pandemics More Likely
,” https://www.nature.com/articles/d41586-020-02341-1, Accessed November 11, 2021.
104.
Runyan
,
C.
, and
Stehm
,
J.
,
2019
, “
Land Use Change, Deforestation and Competition for Land Due to Food Production
,”
Encycl. Food Sec. Sustain.
,
3
, pp.
21
26
.
105.
Palm
,
C. A.
,
Houghton
,
R. A.
,
Melillo
,
J. M.
,
Skole
,
D.
, and
Woodwell
,
G. M.
,
1986
, “The Effect of Tropical Deforestation on Atmospheric CO2,”
Land Clearing and Development in the Tropics
,
R.
Lal
,
P. A.
Sanchez
, and
R. W.
Cummings
, eds.,
A. A. Balkema
,
Rotterdam, Netherlands
, pp.
181
194
.
106.
Wang
,
F.
,
Fan
,
W.
,
Liu
,
J.
,
Wang
,
G.
, and
Chai
,
W.
,
2020
, “
The Effect of Urbanization and Spatial Agglomeration on Carbon Emissions in Urban Agglomeration
,”
Environ. Sci. Pollut. Res.
,
27
(
19
), pp.
24329
24341
.
107.
Crosson
,
P.
,
Shalloo
,
L.
,
O’Brien
,
D.
,
Lanigan
,
G. J.
,
Foley
,
P. A.
,
Boland
,
T. M.
, and
Kenny
,
D. A.
,
2011
, “
A Review of Whole Farm Systems Models of Greenhouse Gas Emissions From Beef and Dairy Cattle Production Systems
,”
Anim. Feed Sci. Technol.
,
166–167
, pp.
29
45
.
108.
Chuai
,
X.
, and
Feng
,
J.
,
2019
, “
High Resolution Carbon Emissions Simulation and Spatial Heterogeneity Analysis Based on Big Data in Nanjing City, China
,”
Sci. Total Environ.
,
686
, pp.
828
837
.
109.
Bellassen
,
V.
, and
Luyssaert
,
S.
,
2014
, “
Carbon Sequestration: Managing Forests in Uncertain Times
,”
Nature
,
506
(
7487
), pp.
153
155
.
110.
Leon
,
S.
,
2021
, “
Chart in Focus: New Data Shows Deforestation in the Brazilian Rainforest at 12 Year High
,” https://www.globalwitness.org/en/blog/chart-focus-new-data-shows-deforestation-brazilian-amazon-12-year-high/, Accessed November 11, 2021.
111.
Smith
,
P.
,
Gregory
,
P. J.
,
van Vuuren
,
D.
,
Obersteiner
,
M.
,
Havlík
,
P.
,
Rounsevell
,
M.
,
Woods
,
J.
,
Stehfest
,
E.
, and
Bellarby
,
J.
,
2010
, “
Competition for Land
,”
Philos. Trans. Royal Soc.
,
365
(
1554
), pp.
2941
2957
.
112.
Gibbs
,
H. K.
, and
Herold
,
M.
,
2007
, “
Tropical Deforestation and Greenhouse Gas Emissions
,” https://iopscience.iop.org/article/10.1088/1748-9326/2/4/045021/meta, Accessed September 29, 2021.
113.
Tripathi
,
V.
,
Edrisi
,
S. A.
,
Chen
,
B.
,
Gupta
,
V. K.
,
Vilu
,
R.
,
Gathergood
,
N.
, and
Abhilash
,
P. C.
,
2017
, “
Biotechnological Advances for Restoring Degraded Land for Sustainable Development
,”
Trends Biotechnol.
,
35
(
9
), pp.
847
859
.
114.
Butchart
,
S. H. M.
,
Di Marco
,
M.
, and
Watson
,
J. E. M.
,
2016
, “
Formulating Smart Commitments on Biodiversity: Lessons From the Aichi Targets
,”
Conserv. Lett.
,
9
(
4
), pp.
457
468
.
115.
USEPA
,
2020
,
Economics of Biofuels
,
EPA
. https://www.epa.gov/environmentaleconomics/
116.
Kovacs
,
Z.
,
2019
, “
Palm Oil Is Not a Green Fuel
,” https://www.transportenvironment.org/discover/palm-oil-not-green-fuel-says-eu/, Accessed November 17, 2021.
117.
Ciriacy-Wantrup
,
S. V.
,
1964
, “
The “New” Competition for Land and Some Implications for Public Policy
,” https://www.jstor.org/stable/24879337?seq=7#metadata_info_tab_contents, Accessed September 23, 2021.
118.
Marsac
,
C.
,
Jacobs
,
N.
, and
Mebratu-Tsegaye
,
T.
,
2021
,
Covid-19 and Land-Based Investment—Changing Landscape
,
CCSI
,
New York
.
119.
Sands
,
R. D.
,
Malcolm
,
S. A.
,
Suttles
,
S. A.
, and
Marshall
,
E.
,
2017
,
Dedicated Energy Crops and Competition for Agricultural Land
,
United States Department of Agriculture
,
Washington, DC
.
120.
Konadu
,
D. D.
,
Mourao
,
Z. S.
,
Allwood
,
J. M.
,
Richards
,
K. S.
,
Kopec
,
G.
,
McMahon
,
R.
, and
Fenner
,
R.
,
2015
, “
Land Use Implications of Future Energy System Trajectories—The Case of the UK 2050 Carbon Plan
,”
Energy Policy
,
86
, pp.
328
337
.
121.
Harvey
,
M.
, and
Pilgrim
,
S.
,
2011
, “
The New Competition for Land: Food, Energy, and Climate Change
,”
Food Policy
,
36
(
1
), pp.
S40
S51
.
122.
Bigelow
,
D.
,
2017
, “
A Primer on Land Use in the United States
,” https://www.ers.usda.gov/amber-waves/2017/december/a-primer-on-land-use-in-the-unitedstates/, Accessed September 29, 2021.
123.
Routley
,
N.
,
2019
, “
Our Impact on Climate Change and Global Land Use in 5 Charts
,” https://www.visualcapitalist.com/impact-on-climate-change-and-land-use/, Accessed November 11, 2021.
124.
Ryan-Collins
,
J.
,
Lloyd
,
T.
, and
Macfarlane
,
L.
,
2017
,
Rethinking the Economics of Land and Housing
,
Zed Books
,
London
.
125.
Tipper
,
R.
,
1998
, “
Mitigation of Greenhouse Gas Emissions by Forestry: A Review of Technical, Economic and Policy Concepts
,”
Brussels, Belgium
.
126.
Coleman-Jensen
,
A.
,
Rabbit
,
M. P.
,
Gregory
,
C. A.
, and
Singh
,
A.
,
2017
, “Household Food Security in the United States in 2017,” United States Department of Agriculture, Economic Research Service,
Washington, DC
.
You do not currently have access to this content.