Abstract

Effects of flow swirl on stability and flow/flame interactions of premixed oxy-methane flames (CH4/O2/CO2) are investigated experimentally and numerically in a premixed model gas turbine combustor. Two swirlers of 55-deg and 45-deg swirl angles were considered to perform this study over a range of combustor operating equivalence ratio (Φ = 0.1–1.0) and oxygen fraction (OF = 21%–70%) at a constant inlet flow velocity of 5.2 m/s. Combustor stability maps (representing flashback and blowout bounds) were identified experimentally in the Φ-OF space for the two swirlers, and the results were plotted over the calculated contours of adiabatic flame temperature (AFT). Specific flames were photographed using a camera to investigate the impact of flow swirl on flame macrostructure. Also, the shapes of the selected flames were calculated numerically using the contours of OH radicals, and the results showed good agreement with the photographed flame shapes. Contours of temperature and flow streamlines were plotted based on numerical calculations to figure out the influence of flow swirl on flame/flow interactions. The results showed that CH4/O2/CO2 swirl flames blow out at fixed AFT of ∼1600 K with no effect of swirl on flame stability near the blowout. Flow/flame interactions significantly affect flame stability near the flashback limit. Flame speed (FS) and AFT correlate with one another as log(FS) ∝ 1/AFT. The 45-deg swirler resulted in a wider stable combustion zone than that of the 55-deg swirler.

References

1.
“IPCC Fourth Assessment Report: Climate Change 2007 (Geneva, Switzerland),” 1340, 2007.
2.
Varagani
,
R.
,
Châtel-Pélage
,
F.
,
Pranda
,
P.
,
Rostam-Abadi
,
M.
,
Lu
,
Y.
, and
Bose
,
A.
,
2005
, “
Performance Simulation and Cost Assessment of oxy-Combustion Process for CO2 Capture From Coal-Fired Power Plants
,”
Proceedings of the Fourth Annual Conference on Carbon Sequestration
,
Alexandria, VA
,
May 2–5
.
3.
Okawa
,
M.
,
Kimura
,
N.
,
Kiga
,
T.
,
Takano
,
S.
,
Arai
,
K.
, and
Kato
,
M.
,
1997
, “
Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2/CO2
,”
Energy Convers. Manage.
,
38
(
S1
), pp. S123–S127.
4.
Châtel-Pélage
,
F.
,
2006
, “
Applications of Oxygen for NOx Control and CO2 Capture in Coal-Fired Power Plants
,”
Therm. Sci.
,
10
(
3
), pp.
119
142
.
5.
Toftegaard
,
M.
,
Brix
,
J.
,
Jensen
,
P.
,
Glarborg
,
P.
, and
Jensen
,
A.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
.
6.
Habib
,
M.
,
Badr
,
H.
,
Ahmed
,
S.
,
Ben-Mansour
,
R.
,
Mezghani
,
K.
,
Imashuku
,
S.
,
la O’
,
G.
, et al
,
2010
, “
A Review of Recent Developments in Carbon Capture Utilizing Oxy-Fuel Combustion in Conventional and Ion Transport Membrane Systems
,”
Int. J. Energy Res.
,
35
(
9
), pp.
741
764
.
7.
Aliyu
,
M.
,
Nemitallah
,
M.
,
Said
,
S.
, and
Habib
,
M.
,
2016
, “
Characteristics of H2-Enriched CH4-O2 Diffusion Flames in a Swirl-Stabilized Gas Turbine Combustor: Experimental and Numerical Study
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
20418
20432
.
8.
Nemitallah
,
M.
,
Elzayed
,
M.
,
Alshadidi
,
A.
,
Abualkhair
,
M.
,
Abdelhafez
,
A.
,
Alzahrani
,
F.
, and
Abdul Jameel
,
A.
,
2023
, “
Stratified Flames in Dual Annular Counter-Rotating Swirl Burner for Wider Operability Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012305
.
9.
Nemitallah
,
M.
,
Hamzat
,
A.
, and
Ismaila
,
K.
,
2023
, “
Role of Oxidizer Mixture Composition on Stabilizing Stratified Oxy-Flames in Dual Lean Premixed Ombustors for Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
031701
.
10.
Lacarelle
,
A.
,
Moeck
,
J.
,
Konle
,
H.
,
Vey
,
S.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2007
, “
Effect of Fuel/Air Mixing on NOx Emissions and Stability in a Gas Premixed Combustion System
,”
Proceedings of the 45th AIAA Aerospace Science Meeting and Exhibit
,
Reno, NV
,
Jan. 24
, pp.
16716
16729
.
11.
Bunce
,
N.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2013
, “
Interaction Between Swirl Number Fluctuations and Vortex Shedding in a Single-Nozzle, Turbulent, Swirling, Fully-Premixed Combustor
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021503
.
12.
Lieuwen
,
T.
, and
Cho
,
J.
,
2005
, “
Coherent Acoustic Wave Amplification/Damping by Wrinkled Flames
,”
J. Sound Vib.
,
279
(
3–5
), pp.
669
686
.
13.
Rashwan
,
S.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2016
, “
Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study
,”
Energy and Fuels
,
30
(
12
), pp.
9981
10014
.
14.
Li
,
L.
,
Guo
,
Z.
,
Zhang
,
C.
, and
Sun
,
X.
,
2010
, “
A Passive Method to Control Combustion Instabilities With Perforated Liner
,”
Chinese J. Aeronaut.
,
23
(
6
), pp.
623
630
.
15.
Sreenivasan
,
K.
, and
Raghu
,
S.
,
2000
, “
The Control of Combustion Instability: A Perspective
,”
Curr. Sci.
,
79
(
6
), pp.
867
883
.
16.
Hoffmann
,
S.
,
Weber
,
G.
,
Judith
,
H.
,
Hermann
,
J.
, and
Orthmann
,
A.
,
1998
, “
Application of Active Combustion Control to Siemens Heavy Duty Gas Turbines
,”
Proceedings of the Symposium of the AVT Panel on Gas Turbine Engine Combustion, Emissions and Alternative Fuels
,
Lisbon
, Oct.
12
16
.
17.
Kokanović
,
S.
,
Guidati
,
G.
,
Torchalla
,
S.
, and
Schuermans
,
B.
,
2006
, “
Active Combustion Control System for Reduction of NOX and Pulsation Levels in Gas Turbines
,”
Proceedings of the ASME Turbo Expo 2006 Power Land, Sea Air
,
Barcelona, Spain
,
May 8–11
, pp.
1
10
.
18.
Lacarelle
,
A.
,
Matho
,
L.
, and
Paschereit
,
C.
,
2010
, “
Scalar Mixing Enhancement in a Swirl Stabilized Combustor Trough Passive and Active Injection Control
,”
Proceedings of the 48th AIAA Aerospace Science Meeting and Inclusions New Horizons Forum Aerospace Expo
,
Orlando, FL
,
Jan. 4–7
.
19.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.
20.
Estefanos
,
W.
,
2016
, “
Effects of the Fuel-Air Mixing on Combustion Instabilities and NOx Emissions in Lean Premixed Combustion
,”
PhD thesis
,
University of Cincinnati
,
Cincinnati, OH
.
21.
Porter
,
R.
,
Liu
,
F.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Smith
,
D.
,
2010
, “
Evaluation of Solution Methods for Radiative Heat Transfer in Gaseous Oxy-Fuel Combustion Environments
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
14
), pp.
2084
2094
.
22.
Johansson
,
R.
,
Leckner
,
B.
,
Andersson
,
K.
, and
Johnsson
,
F.
,
2011
, “
Account for Variations in the H2O to CO2 Molar Ratio When Modelling Gaseous Radiative Heat Transfer With the Weighted-Sum-of-Grey-Gases Model
,”
Combust. Flame
,
158
(
5
), pp.
893
901
.
23.
Nemitallah
,
M.
,
Imteyaz
,
B.
,
Abdelhafez
,
A.
, and
Habib
,
M.
,
2019
, “
Experimental and Computational Study on Stability Characteristics of Hydrogen-Enriched Oxy-Methane Premixed Flames
,”
Appl. Energy
,
250
, pp.
433
443
.
24.
ANSYS Inc.
,
2011
,
Ansys Fluent Theory Guide
, Canonsburg, PA.
25.
Göttgens
,
J.
,
Mauss
,
F.
, and
Peters
,
N.
,
1992
, “
Analytic Approximations of Burning Velocities and Flame Thicknesses of Lean Hydrogen, Methane, Ethylene, Ethane, Acetylene, and Propane Flames
,”
Symp. Combust.
,
24
(
1
), pp.
129
135
.
26.
Salem
,
E.
,
2018
, “
Numerical Simulations of Premixed Flames of Multi Component Fuels/Air Mixture and Their Applications
,” Master's Thesis, University of Kentucky, Lexington, KY.
27.
Ali
,
A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Hussain
,
M.
,
Kamal
,
M.
, and
Habib
,
M.
,
2021
, “
Comparative Analysis of the Stability and Structure of Premixed C3H8/O2/CO2 and C3H8/O2/N2 Flames for Clean Flexible Energy Production
,”
Energy
,
214
, p.
118887
.
28.
Hussain
,
M.
,
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Araoye
,
A.
,
Ben-Mansour
,
R.
, and
Habib
,
M.
,
2020
, “
A Highly Diluted Oxy-Fuel Micromixer Combustor With Hydrogen Enrichment for Enhancing Turndown in Gas Turbines
,”
Appl. Energy
,
279
, p.
115818
.
29.
Sugawara
,
E.
, and
Nikaido
,
H.
,
2014
, “
Properties of AdeABC and AdeIJK Efflux Systems of Acinetobacter Baumannii Compared With Those of the AcrAB-TolC System of Escherichia Coli
,”
Antimicrob. Agents Chemother.
,
58
(
12
), pp.
7250
7257
.
30.
Lefebvre
,
A.
, and
Ballal
,
D.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed,
CRC Press, Boca Raton, FL
.
31.
Nozari
,
M.
,
Tabejamaat
,
S.
,
Sadeghizade
,
H.
, and
Aghayari
,
M.
,
2021
, “
Experimental Investigation of the Effect of Gaseous Fuel Injector Geometry on the Pollutant Formation and Thermal Characteristics of a Micro Gas Turbine Combustor
,”
Energy
,
235
, p.
121372
.
32.
Ali
,
A.
,
Nemitallah
,
M.
,
Abdelhafez
,
A.
,
Alsakhawy
,
I.
,
Kamal
,
M.
, and
Habib
,
M.
,
2019
, “
Static Stability and Combustion Characteristics of Oxy-Propane Flames in a Premixed Fuel-Flexible Swirl Combustor
,”
Energy and Fuels
,
33
(
11
), pp.
11996
12007
.
33.
Brohez
,
S.
,
Delvosalle
,
C.
, and
Marlair
,
G.
,
2004
, “
A Two-Thermocouples Probe for Radiation Corrections of Measured Temperatures in Compartment Fires
,”
Fire Saf. J.
,
39
(
5
), pp.
399
411
.
34.
Liu
,
X.
,
Zheng
,
H.
,
Yang
,
J.
, and
Li
,
Y.
,
2015
, “
LES-PDF Modeling of Blowout Analysis in Slit Bluff-Body Stabilized Flames
,”
Int. J. Spray Combust. Dyn.
,
7
(
2
), pp.
131
150
.
35.
Mercier
,
R.
,
2016
, “
Experimental and Numerical Investigation of the Influence of Thermal Boundary Conditions on Premixed Swirling Flame Stabilization
,”
Combust. Flame
,
171
, pp.
42
58
.
36.
Stöllinger
,
M.
, and
Heinz
,
S.
,
2008
, “
PDF Modeling and Simulation of Premixed Turbulent Combustion
,”
Monte Carlo Methods Appl.
,
14
(
4
), pp.
343
377
.
37.
Nemitallah
,
M.
,
Mansir
,
I.
,
Haque
,
M.
,
Abdelhafez
,
A.
, and
Habib
,
M.
,
2023
, “
Effects of Adiabatic Flame Temperature on Premixed Combustion Stability and Emission Characteristics of Swirl-Stabilized Oxy-Methane Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022302
.
38.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Said
,
S. A. M.
,
Okonkwo
,
P. C.
, and
Habib
,
M.
,
2023
, “
Effects of Adiabatic Flame Temperature and Oxygen Concentration in CH4/N2/O2 Non-Swirl Jet Flames: Experimental and Numerical Study
,”
ASME J. Energy Resour. Technol.
,
145
(
8
), p.
081201
.
39.
Abdelhafez
,
A.
,
Rashwan
,
S.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2018
, “
Stability Map and Shape of Premixed CH4/O2/CO2 Flames in a Model Gas-Turbine Combustor
,”
Appl. Energy
,
215
, pp.
63
74
.
40.
Kutlar
,
O.
,
Doğan
,
H.
,
Demirci
,
A.
, and
Arslan
,
H.
,
2023
, “
An Investigation of the Impact of Combustion Chamber Geometry on Turbulent Burning Speeds in a Thermodynamic Model
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062304
.
41.
Van Maaren
,
A.
,
Thung
,
D.
, and
De Goey
,
L.
,
1994
, “
Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures
,”
Combust. Sci. Technol.
,
96
(
4–6
), pp.
327
344
.
42.
Kaskan
,
W.
,
1957
, “
The Dependence of Flame Temperature on Mass Burning Velocity
,”
Symp. Combust.
,
6
(
1
), pp.
134
143
.
You do not currently have access to this content.