Abstract

With the aim to obtain a pure renewable second-generation biofuel, transesterification reaction of safflower oil and sugar beet molasses-originated ethanol and usage options as a blend component were investigated. Depleting fossil fuels, increasing fossil fuel prices, and fossil fuel-related emissions are significant global problems. The progress in pure bio-based and safer fuels gains importance to figure out these problems. Biodiesel is an excellent fuel candidate that can substitute conventional diesel fuel. For its production, fatty acid methyl esters were primarily proposed. However, with their many advantages, ethyl esters have come to the fore because of environmental and technical issues. Thus, using a by-product originated bioethanol as alcohol and safflower oil as a nonedible raw material would further enhance the renewability and sustainability of one of the second-generation biofuels. This article studied the transesterification reaction of safflower oil with sugar-beet molasses-originated bioethanol. The effects of the safflower oil:ethanol (mole:mole) ratio, catalyst amount, and temperature on the ester content were individually investigated. The fuel properties of safflower oil ethyl ester and 2%, 5%, and 7% v/v safflower oil ethyl ester-blended diesel and rural diesel fuels were determined according to the standards. The main advantages of ethyl ester addition to diesel fuel include the increase in flash point and the decrease in the sulfur content. However, some additives should improve some properties (cold filter plugging point and oxidation stability).

References

1.
Borand
,
M. N.
,
Kaya
,
A. I.
, and
Karaosmanoglu
,
F.
,
2020
, “
Saccharification Yield Through Enzymatic Hydrolysis of the Steam-Exploded Pinewood
,”
Energies
,
13
(
17
), p.
4552
.
2.
Hosseinzadeh-Bandbafha
,
H.
,
Nazemi
,
F.
,
Khounani
,
Z.
,
Ghanavati
,
H.
,
Shafiei
,
M.
,
Karimi
,
K.
,
Lam
,
S. S.
,
Aghbashlo
,
M.
, and
Tabatabaei
,
M.
,
2022
, “
Safflower-Based Biorefinery Producing a Broad Spectrum of Biofuels and Biochemicals: A Life Cycle Assessment Perspective
,”
Sci. Total Environ.
,
802
, pp.
1
12
.
3.
Basha
,
S. A.
,
Gopal
,
K. R.
, and
Jebaraj
,
S.
,
2009
, “
A Review on Biodiesel Production, Combustion, Emissions and Performance
,”
Renew. Sustain. Energy Rev.
,
13
(
6–7
), pp.
1628
1634
.
4.
Khounani
,
Z.
,
Nazemi
,
F.
,
Shafiei
,
M.
,
Aghbashlo
,
M.
, and
Tabatabaei
,
M.
,
2019
, “
Techno-Economic Aspects of a Safflower-Based Biorefinery Plant Co-producing Bioethanol and Biodiesel
,”
Energy Convers. Manag.
,
201
, pp.
1
15
.
5.
Otchere
,
P.
,
Pan
,
J.
,
Fan
,
B.
,
Chen
,
W.
, and
Lu
,
Y.
,
2021
, “
Recent Studies of Fuels Used in Wankel Rotary Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
030801
.
6.
Isler
,
A.
, and
Karaosmanoglu
,
F.
,
2010
, “Biofuels in Turkey,”
Rethinking Structural Reform in Turkish Agriculture: Beyond the World Bank’s Strategy
,
B.
Karapinar
,
F.
Adaman
, and
G.
Ozertan
, eds.,
Nova Science Publisher
,
New York
, pp.
321
344
.
7.
Mat Aron
,
N. S.
,
Khoo
,
K. S.
,
Chew
,
K. W.
,
Show
,
P. L.
,
Chen
,
W. H.
, and
Nguyen
,
T. H. P.
,
2020
, “
Sustainability of the Four Generations of Biofuels—A Review
,”
Int. J. Energy Res.
,
44
(
12
), pp.
9266
9282
.
8.
Lee
,
R. A.
, and
Lavoie
,
J. M.
,
2013
, “
From First- to Third-Generation Biofuels: Challenges of Producing a Commodity From a Biomass of Increasing Complexity
,”
Anim. Front.
,
3
(
2
), pp.
6
11
.
9.
Baig
,
A.
, and
Ng
,
F.
,
2012
, “
A Novel Green Catalytic Process for Biodiesel Production From Jatropha
,”
J. Am. Chem. Soc.
,
23
(
10
), pp.
632
635
.
10.
European Biomass Association
,
2015
,
Statistical Report-European Bioenergy Outlook
.
11.
Brigham
,
C.
, and
Bader
,
J.
,
2018
,
From Ethanol to Biodiesel: A Survey of Green Fuels
,
Elsevier Inc.
,
Boston, MA
.
12.
Boboescu
,
I. Z.
, et al
,
2019
, “
Making Next-Generation Biofuels and Biocommodities a Feasible Reality
,”
Curr. Opin. Green Sustain. Chem.
,
20
, pp.
25
32
.
13.
Moncada
,
J.
,
Tamayo
,
J. A.
, and
Cardona
,
C. A.
,
2014
, “
Integrating First, Second, and Third Generation Biorefineries: Incorporating Microalgae Into the Sugarcane Biorefinery
,”
Chem. Eng. Sci.
,
118
, pp.
126
140
.
14.
Hughes
,
S. R.
,
Gibbons
,
W. R.
,
Moser
,
B. R.
, and
Rich
,
J. O.
,
2013
, “Sustainable Multipurpose Biorefineries for Third-Generation Biofuels and Value-Added Co-Products,”
Biofuel-Economy, Environment and Sustainability
,
Z.
Fang
, ed.,
InTech Open
,
London
, pp.
245
267
.
15.
Knothe
,
G.
,
Gerpen
,
J. V.
, and
Krahl
,
J.
,
2004
,
The Biodiesel Handbook
,
AOCS Press
,
Champaign, IL
.
16.
Yesilyurt
,
M. K.
,
Cesur
,
C.
,
Aslan
,
V.
, and
Yilbasi
,
Z.
,
2020
, “
The Production of Biodiesel From Safflower (Carthamus tinctorius L.) Oil as a Potential Feedstock and Its Usage in Compression Ignition Engine: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
119
, p.
109574
.
17.
Anderson
,
A.
,
Al-Mohaimeed
,
A. M.
,
Elshikh
,
M. S.
,
Praveenkumar
,
T. R.
, and
Sekar
,
M.
,
2021
, “
Exergy and Energy Analysis of α-Fe2O3-Doped Al2O3 Nanocatalyst-Based Biodiesel Blends—Performance and Emission Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120902
.
18.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 1—No Load and Highway Driving Emissions, and Acceleration Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042307
7
.
19.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 2—Lubricating Oil Condition Monitoring
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042308
.
20.
Sharma
,
P.
, and
Sharma
,
A. K.
,
2022
, “
Statistical and Continuous Wavelet Transformation-Based Analysis of Combustion Instabilities in a Biodiesel-Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032304
.
21.
Hoekman
,
S. K.
,
Broch
,
A.
,
Robbins
,
C.
,
Ceniceros
,
E.
, and
Natarajan
,
M.
,
2012
, “
Review of Biodiesel Composition, Properties, and Specifications
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
143
169
.
22.
Yusoff
,
M. F. M.
,
Xu
,
X.
, and
Guo
,
Z.
,
2014
, “
Comparison of Fatty Acid Methyl and Ethyl Esters as Biodiesel Base Stock: A Review on Processing and Production Requirements
,”
JAOCS, J. Am. Oil Chem. Soc.
,
91
(
4
), pp.
525
531
.
23.
Singh
,
A. P.
,
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2022
, “
Methanol/Ethanol/Butanol-Gasoline Blends Use in Transportation Engine—Part 1: Combustion, Emissions, and Performance Study
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102304
.
24.
Stamenković
,
O. S.
,
Veličković
,
A. V.
, and
Veljković
,
V. B.
,
2011
, “
The Production of Biodiesel From Vegetable Oils by Ethanolysis: Current State and Perspectives
,”
Fuel
,
90
(
11
), pp.
3141
3155
.
25.
Nogales-Delgado
,
S.
,
Encinar
,
J. M.
, and
González
,
J. F.
,
2019
, “
Safflower Biodiesel: Improvement of Its Oxidative Stability bu Using BHA and TBHQ
,”
Energies
,
12
, pp.
1
13
.
26.
Mittelbach
,
M.
, and
Remschmidt
,
C.
,
2004
,
Biodiesel, the Comprehensive Handbook
,
Boersedruck GesmbH
,
Vienna, Austria
.
27.
Mendow
,
G.
,
Veizaga
,
N. S.
, and
Querini
,
C. A.
,
2011
, “
Ethyl Ester Production by Homogeneous Alkaline Transesterification: Influence of the Catalyst
,”
Bioresour. Technol.
,
102
(
11
), pp.
6385
6391
.
28.
Deboni
,
T. M.
,
Hirata
,
G. A. M.
,
Shimamoto
,
G. G.
,
Tubino
,
M.
, and
Meirelles
,
A. J. d. A.
,
2018
, “
Deacidification and Ethyl Biodiesel Production From Acid Soybean Oil Using a Strong Anion Exchange Resin
,”
Chem. Eng. J.
,
333
, pp.
686
696
.
29.
Carareto
,
N. D. D.
,
Kimura
,
C. Y. C. S.
,
Oliveira
,
E. C.
,
Costa
,
M. C.
, and
Meirelles
,
A. J. A.
,
2012
, “
Flash Points of Mixtures Containing Ethyl Esters or Ethylic Biodiesel and Ethanol
,”
Fuel
,
96
, pp.
319
326
.
30.
Coniglio
,
L.
,
Bennadji
,
H.
,
Glaude
,
P. A.
,
Herbinet
,
O.
, and
Billaud
,
F.
,
2013
, “
Combustion Chemical Kinetics of Biodiesel and Related Compounds (Methyl and Ethyl Esters): Experiments and Modeling-Advances and Future Refinements
,”
Prog. Energy Combust. Sci.
,
39
(
4
), pp.
340
382
.
31.
Sanli
,
H.
,
Alptekin
,
E.
, and
Canakci
,
M.
,
2019
, “
Production of Fuel Quality Ethyl Ester Biodiesel: 1. Laboratory-Scale Optimization of Waste Frying Oil Ethanolysis, 2. Pilot-Scale Production With the Optimal Reaction Conditions
,”
Waste Biomass Valorization
,
10
(
7
), pp.
1889
1898
.
32.
Tangviroon
,
P.
, and
Svang-ariyaskul
,
A.
,
2014
, “
Life Cycle Assessment Comparison Between Methanol and Ethanol Feedstock for the Biodiesel From Soybean Oil
,”
Int. J. Chem. Nucl. Mater. Metall. Eng.
,
8
(
5
), pp.
371
378
.
33.
Chen
,
J.
, Zhang, B., Luo, L., Zhang, F., Yi, Y., Shan, Y., Liu, B., et al.,
2021
, “
A Review on Recycling Techniques for Bioethanol Production From Lignocellulosic Biomass
,”
Renew. Sustain. Energy Rev.
,
149
, p.
111370
.
34.
Chen
,
J.
, Bian, X., Rapp, G., Lang, J., Montoya, A., Trethowan, R., Bouyssiere, B., et al.,
2019
, “
From Ethyl Biodiesel to Biolubricants: Options for an Indian Mustard Integrated Biorefinery Toward a Green and Circular Economy
,”
Ind. Crops Prod.
,
137
, pp.
597
614
.
35.
Dajue
,
L.
, and
Müdel
,
H.
,
1996
,
Safflower Manual
,
International Plant Genetic Resources Institute
,
Rome, Italy
, pp.
1
83
.
36.
Yau
,
S. K.
, and
Ryan
,
J.
,
2010
, “
Response of Rainfed Safflower to Nitrogen Fertilization Under Mediterranean Conditions
,”
Ind. Crops Prod.
,
32
(
3
), pp.
318
323
.
37.
de Oliveira
,
C. V. K.
, Santos, R. F., Cruz Siqueira, J. A., Bariccatti, R. A., Galant Lenz, N. B., Cruz, G. S., Tokura, L. K., and Klajn, F. F.
2018
, “
Chemical Characterization of Oil and Biodiesel From Four Safflower Genotypes
,”
Ind. Crops Prod.
,
123
, pp.
192
196
.
38.
Asokan
,
M. A.
,
Senthur Prabu
,
S.
,
Prathiba
,
S.
,
Mishra
,
S.
,
Mittal
,
H.
, and
Verma
,
V.
,
2021
, “
Emission and Performance Behavior of Safflower Oil Biodiesel/Diesel Blends in DI Diesel Engine
,”
Mater. Today Proc.
,
46
(
17
), pp.
8266
8270
.
39.
Singh
,
V.
, and
Nimbkar
,
N.
,
2007
, “Safflower (Carthamus tinctorius L.),”
Genetic Resources, Chromosome Engineering, and Crop Improvement
,
R. J.
Smith
, ed.,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
, pp.
167
194
.
40.
Ergönül
,
P. G.
, and
Özbek
,
Z. A.
,
2020
, “Cold Pressed Safflower (Carthamus tinctorius L.) Seed Oil,”
Green Technol. Bioact. Compd. Funct. Appl.
,
M. F.
Ramadan
, ed.,
Academic Press
,
London
, pp.
323
333
.
41.
Işigigür
,
A.
,
Karaosmanoglu
,
F.
,
Aksoy
,
H. A.
,
Hamdullahpur
,
F.
, and
Gülder
,
O. L.
,
1994
, “
Performance and Emission Characteristics of a Diesel Engine Operating on Safflower Seed Oil Methyl Ester
,”
Appl. Biochem. Biotechnol.
,
45–46
(
1
), pp.
93
102
.
42.
Dordas
,
C. A.
, and
Sioulas
,
C.
,
2008
, “
Safflower Yield, Chlorophyll Content, Photosynthesis, and Water Use Efficiency Response to Nitrogen Fertilization Under Rainfed Conditions
,”
Ind. Crops Prod.
,
27
(
1
), pp.
75
85
.
43.
Işigigür
,
A.
,
Karaosmanoglu
,
F.
, and
Aksoy
,
H. A.
,
1995
, “
Characteristics of Safflower Seed Oils of Turkish Origin
,”
J. Am. Oil Chem. Soc.
,
72
(
10
), pp.
1223
1225
.
44.
Aksoy
,
F.
,
2016
, “
Alkaline Catalyzed Biodiesel Production From Safflower (Carthamus tinctorius L.) Oil: Optimization of Parameters and Determination of Fuel Properties
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
38
(
6
), pp.
835
841
.
45.
Ahmad
,
M.
, et al
,
2015
, “
Optimization of Biodiesel Production From Carthamus tinctorius L. CV. Thori 78: A Novel Cultivar of Safflower Crop
,”
Int. J. Green Energy
,
12
(
5
), pp.
447
452
.
46.
Sadia
,
H.
,
Ahmad
,
M.
,
Zafar
,
M.
,
Sultana
,
S.
,
Azam
,
A.
, and
Khan
,
M. A.
,
2013
, “
Variables Effecting the Optimization of Non Edible Wild Safflower Oil Biodiesel Using Alkali Catalyzed Transesterification
,”
Int. J. Green Energy
,
10
(
1
), pp.
53
62
.
47.
Karabas
,
H.
,
2014
, “
Application of the Taguchi Method for the Optimization of Effective Parameters on the Safflower Seed Oil Methyl Ester Production
,”
Int. J. Green Energy
,
11
(
9
), pp.
1002
1012
.
48.
Ilkiliç
,
C.
,
Aydin
,
S.
,
Behcet
,
R.
, and
Aydin
,
H.
,
2011
, “
Biodiesel From Safflower Oil and Its Application in a Diesel Engine
,”
Fuel Process. Technol.
,
92
(
3
), pp.
356
362
.
49.
Eryilmaz
,
T.
, and
Yesilyurt
,
M. K.
,
2016
, “
Influence of Blending Ratio on the Physicochemical Properties of Safflower Oil Methyl Ester-Safflower Oil, Safflower Oil Methyl Ester-Diesel and Safflower Oil-Diesel
,”
Renew. Energy
,
95
, pp.
233
247
.
50.
Duz
,
M. Z.
,
Saydut
,
A.
, and
Ozturk
,
G.
,
2011
, “
Alkali Catalyzed Transesterification of Safflower Seed oil Assisted by Microwave Irradiation
,”
Fuel Process. Technol.
,
92
(
3
), pp.
308
313
.
51.
Aydın
,
F.
, and
Öğüt
,
H.
,
2017
, “
Effects of Using Ethanol-Biodiesel-Diesel Fuel in Single Cylinder Diesel Engine to Engine Performance and Emissions
,”
Renew. Energy
,
103
, pp.
688
694
.
52.
Al-Samaraae
,
R. R.
, Atabani, A. E., Uguz, G., Gopalakrishnan Kumar, Arpa, O. Ayanoglu, A., Mohammed, M. N., and Farouk, H.,
2020
, “
Perspective of Safflower (Carthamus tinctorius) as a Potential Biodiesel Feedstock in Turkey: Characterization, Engine Performance and Emissions Analyses of Butanol–Biodiesel–Diesel Blends
,”
Biofuels
,
11
(
6
), pp.
715
731
.
53.
Özçelik
,
A. E.
,
Acaroǧlu
,
M.
, and
Akgün
,
N.
,
2016
, “
The Effect of Additives on the Oxidation Stability of Biodiesel
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
38
(
5
), pp.
702
708
.
54.
IŞIK
,
M. Z.
,
2021
, “
Comparative Experimental Investigation on the Effects of Heavy Alcohols-Safflower Biodiesel Blends on Combustion, Performance and Emissions in a Power Generator Diesel Engine
,”
Appl. Therm. Eng.
,
184
, pp.
1
10
.
55.
Boubahri
,
C.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
.
56.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
, and
Agarwal
,
A. K.
,
2021
, “
Regulated, Unregulated, and Particulate Emissions From Biodiesel Blend Fueled Transportation Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
084501
.
57.
Černoch
,
M.
,
Hájek
,
M.
, and
Skopal
,
F.
,
2010
, “
Ethanolysis of Rapeseed Oil—Distribution of Ethyl Esters, Glycerides and Glycerol Between Ester and Glycerol Phases
,”
Bioresour. Technol.
,
101
(
7
), pp.
2071
2075
.
58.
Moser
,
B. R.
, and
Vaughn
,
S. F.
,
2010
, “
Evaluation of Alkyl Esters From Camelina Sativa Oil as Biodiesel and as Blend Components in Ultra Low-Sulfur Diesel Fuel
,”
Bioresour. Technol.
,
101
(
2
), pp.
646
653
.
59.
Bueno
,
A. V.
,
Velásquez
,
J. A.
, and
Milanez
,
L. F.
,
2011
, “
Heat Release and Engine Performance Effects of Soybean Oil Ethyl Ester Blending Into Diesel Fuel
,”
Energy
,
36
(
6
), pp.
3907
3916
.
60.
Joshi
,
H.
,
Moser
,
B. R.
,
Toler
,
J.
, and
Walker
,
T.
,
2010
, “
Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters
,”
Biomass Bioenergy
,
34
(
1
), pp.
14
20
.
61.
Thomas
,
T. P.
,
Birney
,
D. M.
, and
Auld
,
D. L.
,
2013
, “
Optimizing Esterification of Safflower, Cottonseed, Castor and Used Cottonseed Oils
,”
Ind. Crops Prod.
,
41
(
1
), pp.
102
106
.
62.
Thomas
,
T. P.
,
Birney
,
D. M.
, and
Auld
,
D. L.
,
2012
, “
Viscosity Reduction of Castor Oil Esters by the Addition of Diesel, Safflower Oil Esters and Additives
,”
Ind. Crops Prod.
,
36
(
1
), pp.
267
270
.
63.
Karaosmanoǧlu
,
F.
,
Ciǧizoǧlu
,
K. B.
,
Tüter
,
M.
, and
Ertekin
,
S.
,
1996
, “
Investigation of the Refining Step of Biodiesel Production
,”
Energy Fuels
,
10
(
4
), pp.
890
895
.
64.
Meka
,
P. K.
,
Tripathi
,
V.
, and
Singh
,
R. P.
,
2007
, “
Synthesis of Biodiesel Fuel From Safflower Oil Using Various Reaction Parameters
,”
J. Oleo Sci.
,
56
(
1
), pp.
9
12
.
65.
Melo
,
A. M. F.
,
2010
, “
Evaluation of Vegetable Oil Properties Aimed at Biodiesel Production
,”
Master thesis
,
Federal University of Paraiba
,
João Pessoa, Brazil
.
66.
Hamamci
,
C.
,
Saydut
,
A.
,
Tonbul
,
Y.
,
Kaya
,
C.
, and
Kafadar
,
A. B.
,
2011
, “
Biodiesel Production via Transesterification From Safflower (Carthamus tinctorius L.) Seed Oil
,”
Energy Sour., Part A Recover. Util. Environ. Eff.
,
33
(
6
), pp.
512
520
.
67.
Rashid
,
U.
, and
Anwar
,
F.
,
2008
, “
Production of Biodiesel Through Base-Catalyzed Transesterification of Safflower Oil Using an Optimized Protocol
,”
Energy Fuels
,
22
(
2
), pp.
1306
1312
.
68.
Sarin
,
A.
,
2012
,
Biodiesel: Production and Properties
,
Royal Society of Chemistry
,
Cambridge
.
69.
Folayan
,
A. J.
,
Anawe
,
P. A. L.
,
Aladejare
,
A. E.
, and
Ayeni
,
A. O.
,
2019
, “
Experimental Investigation of the Effect of Fatty Acids Configuration, Chain Length, Branching and Degree of Unsaturation on Biodiesel Fuel Properties Obtained From Lauric Oils, High-Oleic and High-Linoleic Vegetable Oil Biomass
,”
Energy Rep.
,
5
, pp.
793
806
.
70.
Jain
,
S.
, and
Sharma
,
M. P.
,
2010
, “
Prospects of Biodiesel From Jatropha in India: A Review
,”
Renew. Sustain. Energy Rev.
,
14
(
2
), pp.
763
771
.
71.
Atadashi
,
I. M.
,
Aroua
,
M. K.
,
Abdul Aziz
,
A. R.
, and
Sulaiman
,
N. M. N.
,
2012
, “
Production of Biodiesel Using High Free Fatty Acid Feedstocks
,”
Renew. Sustain. Energy Rev.
,
16
(
5
), pp.
3275
3285
.
72.
Lang
,
X.
,
Dalai
,
A. K.
,
Bakhshi
,
N. N.
,
Reaney
,
M. J.
, and
Hertz
,
P. B.
,
2001
, “
Preparation and Characterization of Bio-Diesels From Various Bio-Oils
,”
Bioresour. Technol.
,
80
(
1
), pp.
53
62
.
73.
Berrios
,
M.
, and
Skelton
,
R. L.
,
2008
, “
Comparison of Purification Methods for Biodiesel
,”
Chem. Eng. J.
,
144
(
3
), pp.
459
465
.
74.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2010
, “
Comparative Corrosive Characteristics of Petroleum Diesel and Palm Biodiesel for Automotive Materials
,”
Fuel Process. Technol.
,
91
(
10
), pp.
1308
1315
.
75.
Saravanan
,
M.
,
Anbarasu
,
A.
, and
Gnanasekaran
,
B. M.
,
2013
, “
Study of Performance and Emission Characteristics of IC Engines by Using Diesel-Water Emulsion
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2531
2544
.
76.
Kumar
,
M. S.
,
Kerihuel
,
A.
,
Bellettre
,
J.
, and
Tazerout
,
M.
,
2006
, “
Ethanol Animal Fat Emulsions as a Diesel Engine Fuel—Part 2: Engine Test Analysis
,”
Fuel
,
85
(
17–18
), pp.
2646
2652
.
77.
Schober
,
S.
, and
Mittelbach
,
M.
,
2007
, “
Iodine Value and Biodiesel: Is Limitation Still Appropriate?
,”
Lipid Technol.
,
19
(
12
), pp.
281
284
.
78.
Drapcho
,
T.
,
Nhuan
,
C. M.
, and
Walker
,
N. P.
,
2012
,
Biofuel’s Engineering Process Technology
,
McGraw-Hill Companies
,
New York
.
79.
Bonazza
,
B.
,
Herman
,
M.
,
Saunders
,
B.
,
Bennett
,
J.
,
Kloss
,
E.
, and
da Silva Junior
,
J.F.
,
2007
,
White Paper on Internationally Compatible Biofuel Standards-Tripartite Task Force Brazil, European Union & United States of America, pp. 1–95
.
80.
Knothe
,
G.
, and
Steidley
,
K. R.
,
2018
, “
The Effect of Metals and Metal Oxides on Biodiesel Oxidative Stability From Promotion to Inhibition
,”
Fuel Process. Technol.
,
177
, pp.
75
80
.
81.
Brunschwig
,
C.
,
Moussavou
,
W.
, and
Blin
,
J.
,
2012
, “
Use of Bioethanol for Biodiesel Production
,”
Prog. Energy Combust. Sci.
,
38
(
2
), pp.
283
301
.
82.
Bhale
,
P. V.
,
Deshpande
,
N. V.
, and
Thombre
,
S. B.
,
2009
, “
Improving the Low Temperature Properties of Biodiesel Fuel
,”
Renew. Energy
,
34
(
3
), pp.
794
800
.
83.
Knothe
,
G.
,
2008
, “
‘Designer’ Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties
,”
Energy and Fuels
,
22
(
2
), pp.
1358
1364
.
84.
Alptekin
,
E.
, and
Canakci
,
M.
,
2008
, “
Determination of the Density and the Viscosities of Biodiesel-Diesel Fuel Blends
,”
Renew. Energy
,
33
(
12
), pp.
2623
2630
.
85.
Ors
,
I.
,
2014
,
Performance, Combustion and Emission Analysis of a Diesel Engine Using Biofuel
,
Selcuk University
,
Konya, Turkey
.
86.
Cheikh
,
K.
,
Sary
,
A.
,
Khaled
,
L.
,
Abdelkrim
,
L.
, and
Mohand
,
T.
,
2016
, “
Experimental Assessment of Performance and Emissions Maps for Biodiesel Fueled Compression Ignition Engine
,”
Appl. Energy
,
161
, pp.
320
329
.
87.
Attia
,
A. M. A.
, and
Hassaneen
,
A. E.
,
2016
, “
Influence of Diesel Fuel Blended With Biodiesel Produced From Waste Cooking Oil on Diesel Engine Performance
,”
Fuel
,
167
, pp.
316
328
.
88.
He
,
B. B.
,
Thompson
,
J. C.
,
Routt
,
D. W.
, and
Van Gerpen
,
J. H.
,
2007
, “
Moisture Absorption in Biodiesel and Its Petro-Diesel Blends
,”
Appl. Eng. Agric.
,
23
(
1
), pp.
71
76
.
89.
Al-Hamamre
,
Z.
, and
Al-Salaymeh
,
A.
,
2014
, “
Physical Properties of (Jojoba Oil + Biodiesel), (Jojoba Oil + Diesel) and (Biodiesel + Diesel) Blends
,”
Fuel
,
123
, pp.
175
188
.
90.
Mobin Siddique
,
M. B.
, Khairuddin, N., Ali, N. A., Hassan, M. A., Ahmed, J., Kasem, S., Tabassum, M., and Afrouzi, H. N.,
2021
, “
A Comprehensive Review on the Application of Bioethanol/Biodiesel in Direct Injection Engines and Consequential Environmental Impact
,”
Clean. Eng. Technol.
,
3
, pp.
1
17
.
You do not currently have access to this content.