Abstract

Supercritical CO2 closed Brayton cycles are a major candidate for future power cycle designs in concentrating solar power applications, with high-temperature recuperators playing an essential role in realizing their high thermal efficiency. Printed circuit heat exchangers (PCHEs) are often chosen for this role due to their thermal-hydraulic and mechanical performance at high temperatures and pressures, all while remaining compact. However, PCHEs can be costly because of the high-performance materials demanded in these applications, and the heat exchanger internal geometry is restricted by their manufacturing process. Additively manufactured heat exchangers can address both of these shortcomings. This work proposes a modular bi-metal high-temperature recuperator with integrated headers to be produced with additive manufacturing. Beginning with existing PCHE channel geometries, a 1D heat exchanger model is developed. Then, multi-objective optimization is used to maximize the heat transfer effectiveness of a lab-scale device while limiting its size. Two distinct channel geometries emerge from the optimization. Optimal designs achieve up to 88% effectiveness with negligible pressure drop. Deterioration of effectiveness due to axial conduction of heat in the heat exchanger walls is found to be a notable problem for lab-scale PCHEs, and the optimal designs obtained here minimize its detrimental effects. A sensitivity analysis reveals that the effectiveness of the recuperator is much less sensitive to variation in mass flowrate in off-design operation when axial conduction is significant, while increasing the length of the device easily increases effectiveness.

References

1.
You
,
D.
, and
Metghalchi
,
H.
,
2021
, “
On the Supercritical Carbon Dioxide Recompression Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
121701
.
2.
He
,
Y.-L.
,
Qiu
,
Y.
,
Wang
,
K.
,
Yuan
,
F.
,
Wang
,
W.-Q.
,
Li
,
M.-J.
, and
Guo
,
J.-Q.
,
2020
, “
Perspective of Concentrating Solar Power
,”
Energy
,
198
, pp.
1
11
.
3.
Turchi
,
C.
,
Ma
,
Z.
,
Neises
,
T.
, and
Wagner
,
M.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
4.
“Quadrennial Technology Review 2015: Advancing Clean Electric Power Technologies—Supercritical Carbon Dioxide Brayton Cycle,” 2015, Tech. Rep., U.S. Department of Energy.
5.
Kwon
,
J. S.
,
Son
,
S.
,
Heo
,
J. Y.
, and
Lee
,
J. I.
,
2020
, “
Compact Heat Exchangers for Supercritical CO2 Power Cycle Application
,”
Energy Convers. Manage.
,
209
(
Apr.
), p.
112666
.
6.
Noaman
,
M.
,
Awad
,
O.
,
Morosuk
,
T.
,
Tsatsaronis
,
G.
, and
Salomo
,
S.
,
2022
, “
Identifying the Market Scenarios for Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050906
.
7.
Carlson
,
M.
, and
Alvarez
,
F.
,
2021
, “
Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090904
.
8.
Black
,
J.
,
Straub
,
D.
,
Robey
,
E.
,
Yip
,
J.
,
Ramesh
,
S.
,
Roy
,
A.
, and
Searle
,
M.
,
2020
, “
Measurement of Convective Heat Transfer Coefficients With Supercritical CO2 Using the Wilson-Plot Technique
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070901
.
9.
Deshmukh
,
A.
,
Kapat
,
J.
, and
Khadse
,
A.
,
2021
, “
Transient Thermodynamic Modeling of Air Cooler in Supercritical CO2 Brayton Cycle for Solar Molten Salt Application
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022013
.
10.
Nikitin
,
K.
,
Kato
,
Y.
, and
Ngo
,
L.
,
2006
, “
Printed Circuit Heat Exchanger Thermal–Hydraulic Performance in Supercritical CO2 Experimental Loop
,”
Int. J. Refrig.
,
29
(
5
), pp.
807
814
.
11.
Chai
,
L.
, and
Tassou
,
S. A.
,
2020
, “
A Review of Printed Circuit Heat Exchangers for Helium and Supercritical CO2 Brayton Cycles
,”
Therm. Sci. Eng. Prog.
,
18
, p.
100543
.
12.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Liu
,
R.
,
2020
, “
A Review on the Thermal-Hydraulic Performance and Optimization of Printed Circuit Heat Exchangers for Supercritical CO2 in Advanced Nuclear Power Systems
,”
Renew. Sustain. Energy Rev.
,
133
, p.
110290
.
13.
Faizan
,
M.
, and
Almerbati
,
A.
,
2023
, “
Evolutionary Design of Compact Counterflow Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032102
.
14.
Mekki
,
B. S.
,
Langer
,
J.
, and
Lynch
,
S.
,
2021
, “
Genetic Algorithm Based Topology Optimization of Heat Exchanger Fins Used in Aerospace Applications
,”
Int. J. Heat Mass Transfer
,
170
, p.
121002
.
15.
Høghøj
,
L. C.
,
Nørhave
,
D. R.
,
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Andreasen
,
C. S.
,
2020
, “
Topology Optimization of Two Fluid Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
163
, p.
120543
.
16.
Kwon
,
J. G.
,
Kim
,
T. H.
,
Park
,
H. S.
,
Cha
,
J. E.
, and
Kim
,
M. H.
,
2016
, “
Optimization of Airfoil-Type PCHE for the Recuperator of Small Scale Brayton Cycle by Cost-Based Objective Function
,”
Nucl. Eng. Des.
,
298
, pp.
192
200
.
17.
Carroll
,
B. E.
,
Otis
,
R. A.
,
Borgonia
,
J. P.
,
Suh
,
J.-O.
,
Dillon
,
R. P.
,
Shapiro
,
A. A.
,
Hofmann
,
D. C.
,
Liu
,
Z. -K.
, and
Beese
,
A. M.
,
2016
, “
Functionally Graded Material of 304L Stainless Steel and Inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling
,”
Acta Mater.
,
108
, pp.
46
54
.
18.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
19.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
20.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Isolating the Effects of Surface Roughness Versus Wall Shape in Numerically Optimized, Additively Manufactured Micro Cooling Channels
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
227
238
.
21.
AK Steel
,
2016
, 316/316L Stainless Steel Product Data Bulletin, https://asremavad.com/wp-content/uploads/2018/11/AK-steel-316-stainless-steel-data-sheet.pdf.
23.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civil Eng.
,
11
(
4
), pp.
133
156
.
24.
Dittus
,
F.
, and
Boelter
,
L.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
25.
Kim
,
I. H.
, and
No
,
H. C.
,
2011
, “
Thermal Hydraulic Performance Analysis of a Printed Circuit Heat Exchanger Using a Helium–Water Test Loop and Numerical Simulations
,”
Appl. Therm. Eng.
,
31
(
17
), pp.
4064
4073
.
26.
Yoon
,
S. H.
,
No
,
H. C.
, and
Kang
,
G. B.
,
2014
, “
Assessment of Straight, Zigzag, S-Shape, and Airfoil PCHEs for Intermediate Heat Exchangers of HTGRs and SFRs
,”
Nucl. Eng. Des.
,
270
, pp.
334
343
.
27.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Numerical Optimization, Characterization, and Experimental Investigation of Additively Manufactured Communicating Microchannels
,”
ASME J. Turbomach.
,
140
(
11
), p.
111003
.
28.
da Silva
,
R. P. P.
,
Mortean
,
M. V. V.
,
de Paiva
,
K. V.
,
Beckedorff
,
L. E.
,
Oliveira
,
J. L. G.
,
Brandão
,
F. G.
,
Monteiro
,
A. S.
,
Carvalho
,
C. S.
,
Oliveira
,
H. R.
,
Borges
,
D. G.
, and
Chastinet
,
V. L.
,
2021
, “
Thermal and Hydrodynamic Analysis of a Compact Heat Exchanger Produced by Additive Manufacturing
,”
Appl. Therm. Eng.
,
193
, p.
116973
.
29.
Baek
,
S.
,
Kim
,
J.-H.
,
Jeong
,
S.
, and
Jung
,
J.
,
2012
, “
Development of Highly Effective Cryogenic Printed Circuit Heat Exchanger (PCHE) With Low Axial Conduction
,”
Cryogenics
,
52
(
7
), pp.
366
374
.
30.
Li
,
Y. Z.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2019
, “
Optimization Investigation on Wavy Channel Printed Circuit Heat Exchanger for Solar Energy Powered Brayton Cycle
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
556
(
1
), p.
012038
.
31.
Yang
,
Y.
,
Li
,
H.
,
Yao
,
M.
,
Zhang
,
Y.
,
Zhang
,
C.
,
Zhang
,
L.
, and
Wu
,
S.
,
2020
, “
Optimizing the Size of a Printed Circuit Heat Exchanger by Multi-objective Genetic Algorithm
,”
Appl. Therm. Eng.
,
167
, p.
114811
.
32.
Wang
,
W.
,
Li
,
B.
,
Tan
,
Y.
,
Li
,
B.
, and
Shuai
,
Y.
,
2022
, “
Multi-objective Optimal Design of NACA Airfoil Fin PCHE Recuperator for Micro-gas Turbine Systems
,”
Appl. Therm. Eng.
,
204
, p.
117864
.
33.
Gezelius
,
K.
,
2004
, “
Design for Compact Intermediate Heat Exchangers for Gas Cooled Fast Reactors
,” Master's thesis, Massachusetts Institute of Technology, Boston, MA.
34.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
35.
Collins
,
I. L.
,
Weibel
,
J. A.
,
Pan
,
L.
, and
Garimella
,
S. V.
,
2019
, “
Evaluation of Additively Manufactured Microchannel Heat Sinks
,”
IEEE Trans. Components Packag. Manuf. Technol.
,
9
(
3
), pp.
446
457
.
You do not currently have access to this content.