Abstract

To realize multi-objective optimization of the parallel-connected double-effect mechanical vapor recompression (MVR) system, this article established an optimization model based on the Strength Pareto Evolution Algorithm 2 (SPEA2), where the total power consumption and the heat exchange area were taken as the optimization objectives. The optimal combination of evaporation temperature, compression temperature rise, and emission concentration was obtained by employing the SPEA2-based multi-objective evolutionary algorithm together with the fuzzy set theory. The emission concentration was added as a variable on the basis of the original optimization, and the optimization results were compared with the original operation conditions. The results showed that the total power consumption of the system lowered by 22.9 kW, and the heat exchange area was reduced by 110.5m2; the coefficient of performance (COP) and exergy efficiency heightened by 8.4% and 24.0%, respectively, and the exergy destruction decreased by 84.6 kW. These results indicate that the established model for system optimization can make up for the deficiency of evaluating and optimizing system performance by manipulating a single-decision variable and improve the energy utilization and thermodynamic perfection of the target system.

References

1.
Yang
,
D.
,
Yin
,
Y.
,
Wang
,
Z.
,
Zhu
,
B.
, and
Gu
,
Q.
,
2017
, “
Multi-Effect Evaporation Coupled With MVR Heat Pump Thermal Integration Distillation for Separating Salt Containing Methanol Wastewater
,”
J. Energy Eng.
,
9
(
12
), pp.
772
785
.
2.
Si
,
Z. T.
,
Han
,
D.
, and
Xiang
,
J. W.
,
2021
, “
Experimental Investigation on the Mechanical Vapor Recompression Evaporation System Coupled With Multiple Vacuum Membrane Distillation Modules to Treat Industrial Wastewater
,”
Sep. Purif. Technol.
,
275
, p.
119178
.
3.
Hou
,
C.
,
Lin
,
W. Y.
,
Yang
,
L. W.
, and
Zhang
,
H. F.
,
2022
, “
Experimental Performance Evaluation and Model-Based Optimal Design of a Mechanical Vapour Recompression System for Radioactive Wastewater Treatment
,”
Energy Convers. Manage.
,
252
, p.
115087
.
4.
Zhou
,
Y. S.
,
Xing
,
L.
, and
Ju
,
W. L.
,
2016
, “
Exergy Analysis for Recycling Alkali From the Wastewater of Textile Mercerisation by Mechanical Vapour Recompression Plants
,”
Int. J. Environ. Eng.
,
8
(
4
), pp.
280
297
.
5.
Alkhulaifi
,
Y.
,
Mokheimer
,
E. M. A.
, and
AlSadah
,
J. H.
,
2019
, “
Performance Optimization of Mechanical Vapor Compression Desalination System Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resources Technol.
,
141
(
4
), p.
042008
.
6.
Li
,
S. Q.
,
Wang
,
H. Z.
,
Huang
,
C.
,
He
,
S. H.
,
Song
,
W. J.
, and
Feng
,
Z. P.
,
2018
, “
Performance Analysis of Single-Stage and Double-Effect Evaporative Concentration System Based on MVR Technology
,”
Adv. New Renewable Energy
,
6
(
1
), pp.
36
41
.
7.
Dahmardeh
,
H.
,
Akhlaghi Amiri
,
H. A.
, and
Nowee
,
S. M.
,
2019
, “
Evaluation of Mechanical Vapor Recompression Crystallization Process for Treatment of High Salinity Wastewater
,”
Chem. Eng. Process. Process Intensif.
,
145
, p.
107682
.
8.
Ahmadi
,
M.
,
Baniasadi
,
E.
, and
Ahmadikia
,
H.
,
2016
, “
Process Modeling and Performance Analysis of a Productive Water Recovery System
,”
Appl. Therm. Eng.
,
112
, pp.
100
110
.
9.
Han
,
D.
,
He
,
W. F.
,
Yue
,
C.
,
Pu
,
W. H.
, and
Liang
,
L.
,
2014
, “
Analysis of Energy Saving for Ammonium Sulfate Solution Processing With Self-Heat Recuperation Principle
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
641
649
.
10.
Zhao
,
Y. Y.
,
Liu
,
G. B.
,
Li
,
L. S.
,
Yang
,
Q. C.
,
Wang
,
L.
,
Tang
,
B.
, and
Xiao
,
J.
,
2017
, “
Performance Analysis on Mechanical Vapor Recompression System
,”
Fluid Mach.
,
45
(
6
), pp.
16
20
.
11.
Shen
,
J. B.
,
Feng
,
G. Z.
,
Xing
,
Z. W.
, and
Wang
,
X. L.
,
2018
, “
Theoretical Study of Two-Stage Water Vapor Compression Systems
,”
Appl. Therm. Eng.
,
147
, pp.
972
982
.
12.
Liu
,
Y.
,
Pei
,
C. L.
,
Wang
,
Z.
,
Zhang
,
W.
, and
Zhang
,
S. F.
,
2016
, “
Performance Analysis of Two-Stage Mechanical Vapor Recompression Evaporation System
,”
Mod. Chem. Ind.
,
36
(
5
), pp.
130
132
.
13.
Gao
,
X. X.
,
Gu
,
Q.
,
Ma
,
J. Q.
, and
Zeng
,
Y. F.
,
2018
, “
MVR Heat Pump Distillation Coupled With ORC Process for Separating a Benzene-Toluene Mixture
,”
Energy
,
143
, pp.
658
665
.
14.
Jiang
,
H.
,
Zhang
,
Z. Y.
, and
Gong
,
W. Q.
,
2020
, “
Design and Evaluation of a Parallel-Connected Double-Effect Mechanical Vapor Recompression Evaporation Crystallization System
,”
Appl. Therm. Eng.
,
179
, p.
115646
.
15.
Si
,
Z. T.
,
Han
,
D.
,
Gu
,
J. M.
,
Song
,
Y.
, and
Liu
,
Y.
,
2020
, “
Exergy Analysis of a Vacuum Membrane Distillation System Integrated With Mechanical Vapor Recompression for Sulfuric Acid Waste Treatment
,”
Appl. Therm. Eng.
,
178
, p.
115516
.
16.
Yan
,
L. X.
,
2010
,
Analysis and Synthesis for Chemical Engineering Process
,
Chemical Industry Press
,
Beijing, China
, pp.
2
3
.
17.
Yue
,
Y. K.
,
Wu
,
X. H.
, and
Zhang
,
Z. T.
,
2018
, “
Operation Characteristic Analysis and Optimization of MVR Seawater Desalination System
,”
J. Eng. Thermophys.
,
39
(
9
), pp.
1985
1990
. CNKI:SUN:GCRB.0.2018-09-016
18.
Zhou
,
Y. S.
,
Shi
,
C. J.
, and
Dong
,
G. Q.
,
2014
, “
Analysis of a Mechanical Vapor Recompression Wastewater Distillation System
,”
Desalination
,
353
, pp.
91
97
.
19.
Shen
,
J. B.
,
Xing
,
Z. W.
,
Wang
,
X. L.
, and
He
,
Z. L.
,
2014
, “
Analysis of a Single-Effect Mechanical Vapor Compression Desalination System Using Water Injected Twin Screw Compressors
,”
Desalination
,
333
(
1
), pp.
146
153
.
20.
Liang
,
L.
,
Han
,
D.
,
Ma
,
R.
, and
Peng
,
T.
,
2013
, “
Treatment of High-Concentration Wastewater Using Double-Effect Mechanical Vapor Recompression
,”
Desalination
,
314
, pp.
139
146
.
21.
Ning
,
W. K.
,
2018
,
Research and Application of Evolutionary Multi-Objective Optimization Algorithm
,
Xi'an University of Electronic Science and Technology
,
Beijing, China
.
22.
Hong
,
W. J.
,
2018
,
Large-Scale Multi-Objective Evolutionary Algorithm and Application
,
University of Science and Technology of China
,
Beijing, China
.
23.
Ke
,
J.
,
Shi
,
W. K.
,
Qian
,
C.
,
Yuan
,
K.
, and
Li
,
G. M.
,
2015
, “
A Multi-Objective Optimization for Composite Leaf Springs Using Genetic Algorithms
,”
J. Xi’an Jiatong Univ.
,
49
(
8
), pp.
102
108
.
24.
Razmi
,
A. R.
,
Arabkoohsar
,
A.
, and
Nami
,
H.
,
2020
, “
Thermoeconomic Analysis and Multi-Objective Optimization of a Novel Hybrid Absorption/Recompression Refrigeration System
,”
Energy
,
210
, p.
118559
.
25.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resources Technol.
,
140
(
7
), p.
071601
.
26.
Bensghaier
,
A.
,
Romdhane
,
L.
, and
Benouezdou
,
F.
,
2012
, “
Multi-Objective Optimization to Predict Muscle Tensions in a Pinch Function Using Genetic Algorithm
,”
Comptes Rendus Mécanique
,
340
(
3
), pp.
0
155
.
27.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
0
197
.
28.
Zitzler
,
E.
,
Laumannns
,
M.
, and
Thiele
,
L.
,
2001
, “
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
,”
Tech. Rep. Gloriastrasse
,
103
.
29.
Zhang
,
D. B.
,
Liu
,
J. W.
,
Jiao
,
S. F.
,
Tian
,
H.
,
Lou
,
C. Z.
,
Zhou
,
Z. H.
,
Zhang
,
J.
,
Wang
,
C. D.
, and
Zuo
,
J.
,
2019
, “
Research on the Configuration and Operation Effect of the Hybrid Solar-Wind-Battery Power Generation System Based on NSGA-II
,”
Energy
,
189
, p.
116121
.
30.
Bekiloğlu
,
H. E.
,
Bedir
,
H.
, and
Anlaş
,
G.
,
2020
, “
Organic Rankine Cycle Optimization With Explicit Designs of Evaporator and Radial Inflow Turbine
,”
ASME J. Energy Resources Technol.
,
142
(
7
), p.
072103
.
31.
Meng
,
Q. C.
,
Yang
,
C. L.
, and
Qiao
,
J. F.
,
2018
, “
Multi-Objective Optimization Design of Water Distribution Systems Based on Improved SPEA2 Algorithm
,”
CAAI Trans. Intell. Technol.
,
13
(
1
), pp.
118
124
.
32.
Wang
,
K.
,
Zhang
,
S. S.
,
He
,
W. P.
,
Wang
,
M. W.
,
Chen
,
J. P.
, and
Wang
,
L. Z.
,
2016
, “
Selective Assembly of Complicated Mechanical Product Based on SPEA2
,”
J. Shanghai Jiaotong Univ.
,
50
(
7
), pp.
1047
1053
.
33.
An
,
X. H.
,
Feng
,
Y. X.
, and
Tan
,
J. R.
,
2012
, “
Planning Method for Supplier-Involved Product Concept Based on Multi-Objective Optimization and Multi-Attribute Decision
,”
J. Mech. Eng.
,
48
(
1
), pp.
119
127
.
34.
Abido
,
M.
,
2006
, “
Multi-Objective Evolutionary Algorithms for Electric Power Dispatch Problem
,”
IEEE Trans. Evol. Comput.
,
10
(
3
), pp.
315
329
.
35.
Deng
,
Z.
,
Zheng
,
L.
,
Li
,
Y.
,
Zhang
,
D.
, and
Chen
,
D.
,
2015
, “
Multi-Objective Optimization for the Magnetic Circuit of Magneto-Rheological Mount Based on NSGA-II Algorithm
,”
Automot. Eng
,
37
(
5
), pp.
554
559
.
36.
Zhu
,
Y. Z.
,
Liao
,
C. H.
, and
Shi
,
Y. C.
,
2008
,
Heat Transfer Process and Equipment
,
China Petrochemical Press
,
Beijing, China
,
113
284
.
37.
Zhang
,
Z. Y.
,
Jiang
,
H.
, and
Gong
,
W. Q.
,
2020
, “
Optimization Design for Mechanical Vapor Recompression Evaporation Crystallization System
,”
J. Xi’an Jiatong Univ.
,
54
(
4
), pp.
101
109
.
You do not currently have access to this content.