Abstract

This article presents wind tunnel experimentation and uses simulations to evaluate the performance of a 14 m-rotor diameter residential-scale wind turbine at different wind speeds. The blades of the rotor baseline design are built using GOE 447 airfoil. Five different tubercle designs were applied to the blade’s leading edge. One of those designs produces more power than a baseline rotor, with an optimum power improvement of 5.5% achieved at 12.5 m/s wind speed. Furthermore, three winglet designs were added to the tip of the baseline design to investigate their influence on power production. The 90 deg, 60 deg, and 30 deg cant angles produce 5.0%, 7.9%, and 6.9% more power than the baseline design, respectively, at 12.5 m/s. Moreover, it is vital to investigate the effect of integrating leading-edge tubercles with winglets and then evaluate the influence of the combination on the aerodynamic performance and power output of the turbine model. It is found that when combining both techniques on the same blade, the improvement mechanism associated with each of them interferes with the other, leading to poor overall performance and less power in the majority of the run simulations.

References

1.
Stein-Brzozowska
,
G.
,
Bergins
,
C.
,
Kukoski
,
A.
,
Wu
,
S.
,
Agraniotis
,
M.
, and
Kakaras
,
E.
,
2016
, “
The Current Trends in Conventional Power Plant Technology on Two Continents From the Perspective of Engineering, Procurement, and Construction Contractor and Original Equipment Manufacturer
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
044501
.
2.
Renewables 2019 Global Status Report
,” REN21 Secretariat, Paris, 2019.
3.
Hasan
,
A.
,
Selim
,
O. M.
,
Abousabae
,
M.
,
Amano
,
R. S.
, and
Otieno
,
W.
,
2021
, “
Economic, Exergy, and Environmental Analyses of the Energy Assessments for U.S. Industries
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112107
.
4.
Ball
,
P. J.
,
2020
, “
Macro Energy Trends and the Future of Geothermal Within the Low-Carbon Energy Portfolio
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010904
.
5.
Ball
,
P. J.
,
2020
, “
A Review of Geothermal Technologies and Their Role in Reducing Greenhouse Gas Emissions in the USA
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010903
.
6.
Li
,
Y.
,
Mohammed
,
S. Q.
,
Nariman
,
G. S.
,
Aljojo
,
N.
,
Rezvani
,
A.
, and
Dadfar
,
S.
,
2020
, “
Energy Management of Microgrid Considering Renewable Energy Sources and Electric Vehicles Using the Backtracking Search Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052103
.
7.
Malloy
,
R.
, and
Amano
,
R.
,
2015
,
Aerodynamics of Wind Turbine Blades–Emerging Topics
,
WIT Press
,
Ashurst Lodge, UK
, pp.
161
177
.
8.
Amano
,
R.
, and
Mohan Das
,
P.
,
2015
,
Aerodynamics of Wind Turbines–Emerging Topics
,
WIT Press
,
Ashurst Lodge, UK
, pp.
11
22
.
9.
Amano
,
R.
,
2015
,
Aerodynamics of Wind Turbine Blades–Emerging Topics
,
WIT Press
,
Ashurst Lodge, UK
, pp.
1
9
.
10.
Amano
,
R. S.
,
2021
, “Aerodynamic Behavior of Rear-Tubercle Horizontal Axis Wind Turbine Blade,”
Sustainable Development for Energy, Power, and Propulsion. Green Energy and Technology
,
A.
De
,
A.
Gupta
,
S.
Aggarwal
,
A.
Kushari
, and
A.
Runchal
, eds.,
Springer
,
Singapore
.
11.
Amano
,
R.
, and
Sunden
,
B.
,
2015
,
Aerodynamics of Wind Turbine Blades–Emerging Topic
,
WIT Press
,
Ashurst Lodge, UK
.
12.
Alkhalidi
,
A.
,
Abuothman
,
A.
,
Abbas
,
H.
,
Al-Duqqah
,
B.
,
Nofal
,
T.
, and
Amano
,
R. S.
,
2022
, “
Cantilever Wind Turbines Installation to Harvest Accelerated Wind in Dams (Hybrid Floating PV–Wind System)
,”
Renewable Energy Focus
,
40
, pp.
39
47
.
13.
Anwar
,
K.
,
Deshmukh
,
S.
, and
Mustafa Rizvi
,
S.
,
2020
, “
Feasibility and Sensitivity Analysis of a Hybrid Photovoltaic/Wind/Biogas/Fuel-Cell/Diesel/Battery System for Off-Grid Rural Electrification Using Homer
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061307
.
14.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Salem
,
A. R.
,
Abdelhadi
,
A. I.
,
Hasan
,
A.
,
Nourin
,
F. N.
,
Abousabae
,
M.
,
Selim
,
O. M.
,
Espindola
,
J.
, and
Amano
,
R. S.
,
2021
, “
Net Zero Energy Model for Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122101
.
15.
Jamal
,
M. A.
, and
Shah
,
O. R.
,
2020
, “
Performance Evaluation of a 1 kW Variable Pitch-Straight Blade Vertical Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121304
.
16.
Shah
,
O. R.
,
Jamal
,
M. A.
,
Khan
,
T. I.
, and
Qazi
,
U. W.
,
2022
, “
Experimental and Numerical Evaluation of Performance of a Variable Pitch Vertical-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061303
.
17.
Al Hamad
,
S.
,
Habash
,
O.
,
Hasan
,
A.
, and
Amano
,
R. S.
,
2022
, “
Effect of the J-Shaped Wind Turbine Airfoil Opening Ratio and Thickness on the Performance of Symmetrical Airfoils
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
051303
.
18.
Laws
,
P.
,
Saini
,
J. S.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2020
, “
Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061303
.
19.
Hassanzadeh
,
R.
,
Mohammadnejad
,
M.
, and
Mostafavi
,
S.
,
2021
, “
Comparison of Various Blade Profiles in a Two-Blade Conventional Savonius Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
021301
.
20.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
21.
Amano
,
R.
,
Avdeev
,
I.
,
Malloy
,
R.
, and
Shams
,
M.
,
2013
, “
Power, Structural and Noise Performance Tests on Different Wind Turbine Rotor Blade Designs
,”
Int. J. Sustainable Energy
,
32
(
2
), pp.
78
95
.
22.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
23.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
24.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051214
.
25.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051204
.
26.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Investigation of Flow Over an Airfoil Using a Hybrid Detached Eddy Simulation–Algebraic Stress Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051206
.
27.
Eltayesh
,
A.
,
Castellani
,
F.
,
Burlando
,
M.
,
Hanna
,
M.
,
Huzayyin
,
A.
,
El-Batsh
,
H.
, and
Becchetti
,
M.
,
2021
, “
Experimental and Numerical Investigation of the Effect of Blade Number on the Aerodynamic Performance of a Small-Scale Horizontal Axis Wind Turbine
,”
Alexandria Eng. J.
,
60
(
4
), pp.
3931
3944
.
28.
Muheisen
,
A.
,
Yass
,
M.
, and
Irthiea
,
I.
,
2021
, “
Enhancement of Horizontal Wind Turbine Blade Performance Using Multiple Airfoils Sections and Fences
,”
J. King Saud Univ. Eng. Sci.
29.
Mohammadi
,
M.
, and
Maghrebi
,
M.
,
2021
, “
Improvement of Wind Turbine Aerodynamic Performance by Vanquishing Stall With Active Multi air jet Blowing
,”
Energy
,
224
, p.
120176
.
30.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
31.
Choi
,
N.
,
Nam
,
S.
,
Jeong
,
J. H.
, and
Kim
,
K. C.
,
2013
, “
Numerical Study on the Horizontal Axis Turbines Arrangement in a Wind Farm: Effect of Separation Distance on the Turbine Aerodynamic Power Output
,”
J. Wind Eng. Ind. Aerodyn.
,
117
, pp.
11
17
.
32.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
.
33.
Hasan
,
A. S.
,
Elgammal
,
T.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2020
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.
34.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2021
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
.
35.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2019
, “
A Study of Power Production and Noise Generation of a Small Wind Turbine for an Urban Environment
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051202
.
36.
Abate
,
G.
,
Mavris
,
D. N.
, and
Sankar
,
L. N.
,
2019
, “
Performance Effects of Leading Edge Tubercles on the NREL Phase VI Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051206
.
37.
Huang
,
G.
,
Shiah
,
Y.
,
Bai
,
C.
, and
Chong
,
W.
,
2015
, “
Experimental Study of the Protuberance Effect on the Blade Performance of a Small Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
202
211
.
38.
Zhang
,
R.
, and
Wu
,
V.
,
2012
, “
Aerodynamic Characteristics of Wind Turbine Blades With a Sinusoidal Leading Edge
,”
Wind Energy
,
15
(
3
), pp.
407
424
.
39.
Kaya
,
M. N.
,
Köse
,
F.
,
Uzol
,
O.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2021
, “
Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
091301
.
40.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2021
, “
Computational Analysis of an Optimized Curved-Bladed Small-Scale Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061302
.
41.
Farhan
,
A.
,
Hassanpour
,
A.
,
Burns
,
A.
, and
Motlagh
,
Y. G.
,
2019
, “
Numerical Study of Effect of Winglet Planform and Airfoil on a Horizontal Axis Wind Turbine Performance
,”
Renewable Energy
,
131
, pp.
1255
1273
.
42.
Elfarra
,
M. A.
,
Sezer-Uzol
,
N.
, and
Akmandor
,
I. S.
,
2014
, “
NREL VI Rotor Blade: Numerical Investigation and Winglet Design and Optimization Using CFD
,”
Wind Energy
,
17
(
4
), pp.
605
626
.
43.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
44.
Khaled
,
M.
,
Ibrahim
,
M.
,
AbdelHamed
,
H.
, and
AbdelGawad
,
A.
,
2019
, “
Investigation of a Small Horizontal Axis Wind Turbine Performance With and Without Winglet
,”
Energy
,
187
, p.
115921
.
45.
Khalafallah
,
M. G.
,
Ahmed
,
A. M.
, and
Emam
,
M. K.
,
2019
, “
The Effect of Using Winglets to Enhance the Performance of Swept Blades of a Horizontal Axis Wind Turbine
,”
Adv. Mech. Eng.
,
11
(
9
), pp.
1
10
.
46.
Muhle
,
F.
,
Bartl
,
J.
,
Hasen
,
T.
,
Adaramola
,
M.
, and
Saetran
,
L.
,
2020
, “
An Experimental Study on the Effects of Winglets on the Tip Vortex Interaction in the Near Wake of a Model Wind Turbine
,”
Wind Energy
,
23
(
5
), pp.
1
15
.
47.
Ostovan
,
Y.
, and
Uzol
,
O.
,
2016
, “
Experimental Study on the Effects of Winglets on the Performance of Two Interacting Horizontal Axis Model Wind Turbines
,”
J. Phys. Conf. Ser.
,
753
, p.
022015
.
48.
The White House
, “FACT SHEET: President Biden Signs Executive Order Catalyzing America’s Clean Energy Economy through Federal Sustainability,” https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/08/fact-sheet-president-biden-signs-executive-order-catalyzing-americas-clean-energy-economy-through-federal-sustainability/, Accessed March 21, 2022.
49.
Mishnaevsky
,
L.
,
Branner
,
K.
,
Petersen
,
H.
,
Beauson
,
J.
,
McGugan
,
M.
, and
Sorensen
,
B.
,
2017
, “
Materials for Wind Turbine Blades: An Overview
,”
Materials (Basel)
,
10
(
11
), p.
1285
.
50.
Jorgensen
,
F. E.
,
2002
,
How to Measure Turbulence with hot-Wire Anemometers—A Practical Guide
,
Dantec Dynamics
,
Skovlunde, Denmark
.
51.
Mahu
,
R.
, and
Popescue
,
F.
,
2011
,
NREL Phase VI Rotor Modeling and Simulation Using Ansys Fluent 12.1
,
Mathematical Modeling in Civil Engineering
,
Warsaw, Poland
, pp.
185
194
.
52.
Aranake
,
A.
,
Lakshminarayan
,
V.
, and
Duraisamy
,
K.
,
2012
, “
Assessment of Transition Model and CFD Methodology for Wind Turbine Flows
,”
42nd AIAA Fluid Dynamics Conference and Exhibit
,
New Orleans, LA
.
53.
Tobin
,
N.
,
Hamid
,
A.
, and
Chamorro
,
L.
,
2015
, “
An Experimental Study on the Effects of Winglets on the Wake and Performance of a Model Wind Turbine
,”
Energies
,
8
(
10
), pp.
11955
11972
.
54.
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2006
,
Aerodynamic Investigation of Winglets on Wind Turbine Blades Using CFD
,
Forskningscenter Risoe. Risoe-R
,
Denmark
.
You do not currently have access to this content.