Abstract

Most of the available research on horizontal-axis wind turbines focuses on either lab-scale (15–60 cm rotor diameter) or commercial large-scale (80–130 m rotor diameter). The current work fills this gap because residential-scale turbines will be one of the key technologies during the next ten years. The current administration promotes dependence on renewables to cut carbon footprint. Therefore, the present work runs wind tunnel experimentation and performs 48 numerical simulations to evaluate the performance of a residential-scale wind turbine with a blade generated from GOE 447 airfoil at three wind speeds (7.5, 12.5, and 17.5 m/s). Three different vortex generator designs were tested when added on the suction side of a 7-m blade. Two of those designs produced more power than a baseline rotor does (7.2% and 10.9% more power than the baseline rotor were achieved at 12.5 m/s wind speed). Furthermore, three winglet designs were added to the baseline design to investigate their influence on power production. The 90 deg, 60 deg, and 30 deg cant angles produce 5.0%,7.9%, and 6.9% more power than the baseline design.

References

1.
Stein-Brzozowska
,
G.
,
Bergins
,
C.
,
Kukoski
,
A.
,
Wu
,
S.
,
Agraniotis
,
M.
, and
Kakaras
,
E.
,
2016
, “
The Current Trends in Conventional Power Plant Technology on Two Continents From the Perspective of Engineering, Procurement, and Construction Contractor and Original Equipment Manufacturer
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
044501
.
2.
Renewables 2019 Global Status Report
,” REN21 Secretariat, Paris, 2019.
3.
Amano
,
R. S.
,
2021
, “Aerodynamic Behavior of Rear-Tubercle Horizontal Axis Wind Turbine Blade,”
Sustainable Development for Energy, Power, and Propulsion. Green Energy and Technology
,
A
De
,
A
Gupta
,
S
Aggarwal
,
A
Kushari
, and
A
Runchal
, eds.,
Springer
,
Singapore
.
4.
Amano
,
R.
, and
Sunden
,
B.
,
2015
,
Aerodynamics of Wind Turbine Blades–Emerging Topic
,
WIT Press
,
Ashurst Lodge, Southampton, UK
.
5.
Amano
,
R.
,
2015
,
Aerodynamics of Wind Turbine Blades–Emerging Topics
,
WIT Press
,
Ashurst Lodge, Southampton, UK
, pp.
1
9
.
6.
Amano
,
R.
, and
Mohan Das
,
P.
,
2015
,
Aerodynamics of Wind Turbines–Emerging Topics
,
WIT Press
,
Ashurst Lodge, Southampton, UK
, pp.
11
22
.
7.
Malloy
,
R.
, and
Amano
,
R.
,
2015
,
Aerodynamics of Wind Turbine Blades–Emerging Topics
,
WIT Press
,
Ashurst Lodge, Southampton, UK
, pp.
161
177
.
8.
Anwar
,
K.
,
Deshmukh
,
S.
, and
Mustafa Rizvi
,
S.
,
2020
, “
Feasibility and Sensitivity Analysis of a Hybrid Photovoltaic/Wind/Biogas/Fuel-Cell/Diesel/Battery System for Off-Grid Rural Electrification Using Homer
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061307
.
9.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Salem
,
A. R.
,
Abdelhadi
,
A. I.
,
Hasan
,
A.
,
Nourin
,
F. N.
,
Abousabae
,
M.
,
Selim
,
O. M.
,
Espindola
,
J.
, and
Amano
,
R. S.
,
2021
, “
Net Zero Energy Model for Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122101
.
10.
Laws
,
P.
,
Saini
,
J. S.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2019
, “
Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061303
.
11.
Hassanzadeh
,
R.
,
Mohammadnejad
,
M.
, and
Mostafavi
,
S.
,
2020
, “
Comparison of Various Blade Profiles in a Two-Blade Conventional Savonius Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
021301
.
12.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
13.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
14.
Amano
,
R. S.
, and
Gupta
,
A.
,
2012
, “
CFD Analysis of Wind Turbine Blade with Winglets
,”
Proceedings of ASME 2012 DETC/CIE, DETC2012-70679
,
Chicago, IL
,
Aug. 12–14
.
15.
Amano
,
R.
,
Alsultan
,
A.
, and
Gupta
,
A.
,
2014
, “
Performance of Wind Turbine Blades With Several Designs
,”
Proceedings of AIAA SciTech 2014
,
National Harbor, MD
,
Jan. 13–17
.
16.
Amano
,
R. S.
,
Gupta
,
A.
,
Alsultan
,
A.
,
Kumar
,
S.
, and
Welsh
,
A.
,
2013
, “
Design and Analysis of Wind Turbine Blades– Winglet, Tubercle, And Slotted
,”
Proceedings of ASME 2013 Turbo Expo
,
San Antonio, TX
,
June 3–7
, GT2013-94116.
17.
Amano
,
R. S.
,
Gupta
,
A.
, and
Alsultan
,
A.
,
2013
, “
Design and CFD Analysis of Wind Turbine Blades
,”
Proceedings of 11th International Energy Conversion Engineering Conference
,
San Jose, CA
,
July 15–17
.
18.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
.
19.
Hasan
,
A. S.
,
Elgammal
,
T.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.
20.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
21.
Choi
,
N.
,
Nam
,
S.
,
Jeong
,
J. H.
, and
Kim
,
K. C.
,
2013
, “
Numerical Study on the Horizontal Axis Turbines Arrangement in a Wind Farm: Effect of Separation Distance on the Turbine Aerodynamic Power Output
,”
J. Wind Eng. Ind. Aerodyn.
,
117
, pp.
11
17
.
22.
Sudhamshu
,
A. R.
,
Manik
,
C. P.
,
Nivedh
,
S.
,
Satish
,
N. S.
,
Vivek
,
M.
, and
Ratna
,
K. V.
,
2016
, “
Numerical Study of Effect of Pitch Angle on Performance Characteristics of a HAWT
,”
Eng. Sci. Technol. Int J.
,
19
(
1
), pp.
632
641
.
23.
Mohammadi
,
M.
, and
Maghrebi
,
M.
,
2021
, “
Improvement of Wind Turbine Aerodynamic Performance by Vanquishing Stall with Active Multi air jet Blowing
,”
Energy
,
224
, p.
120176
.
24.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
.
25.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2019
, “
A Study of Power Production and Noise Generation of a Small Wind Turbine for an Urban Environment
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051202
.
26.
Khaled
,
M.
,
Ibrahim
,
M.
,
AbdelHamed
,
H.
, and
AbdelGawad
,
A.
,
2019
, “
Investigation of a Small Horizontal Axis Wind Turbine Performance With and Without Winglet
,”
Energy
,
187
, p.
115921
.
27.
Khalafallah
,
M. G.
,
Ahmed
,
A. M.
, and
Emam
,
M. K.
,
2019
, “
The Effect of Using Winglets to Enhance the Performance of Swept Blades of a Horizontal Axis Wind Turbine
,”
Adv. Mech. Eng.
,
11
(
9
), pp.
1
10
.
28.
Muhle
,
F.
,
Bartl
,
J.
,
Hasen
,
T.
,
Adaramola
,
M.
, and
Saetran
,
L.
,
2020
, “
An Experimental Study on the Effects of Winglets on the Tip Vortex Interaction in the Near Wake of a Model Wind Turbine
,”
Wind Energy
,
23
(
5
), pp.
1
15
.
29.
Ostovan
,
Y.
, and
Uzol
,
O.
,
2016
, “
Experimental Study on the Effects of Winglets on the Performance of Two Interacting Horizontal Axis Model Wind Turbines
,”
J. Phys. Conf. Ser.
,
753
(
2
), p.
022015
.
30.
Johansen
,
J.
,
Soerensen
,
N.
, and
Zahle
,
F.
,
2004
,
Aerodynamic Accessories
,
Riso National Lab
,
Roskilde, Denmark
.
31.
Chawla
,
J.
,
Suryanarayanan
,
S.
,
Puranik
,
B.
,
Sheridan
,
J.
, and
Falzon
,
B.
,
2014
, “
Efficiency Improvement Study for Small Wind Turbines Through Flow Control
,”
Sustainable Energy Technol.
,
7
(
12
), pp.
195
208
.
32.
Salviano
,
I.
,
Dezan
,
D.
, and
Yanagihara
,
J.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
33.
Shun
,
S.
, and
Ahmed
,
N.
,
2012
, “
Wind Turbine Performance Improvements Using Active Flow Control
,”
Procedia Eng.
,
49
, pp.
83
91
.
34.
Gyatt
,
G.
,
1986
,
Development and Testing of Vortex Generators for Small Horizontal Axis Wind Turbines
,
AeroVironment, Inc.
,
Monrovia, CA
.
35.
Wang
,
H.
,
Zhang
,
B.
,
Qin
,
Q.
, and
Xu
,
X.
,
2017
, “
Flow Control on the NREL S809 Wind Turbine Airfoil Using Vortex Generators
,”
Energy
,
118
(
1
), pp.
1210
1221
.
36.
Astolfi
,
D.
,
Castellani
,
F.
,
Fravolini
,
M. L.
,
Cascianelli
,
S.
, and
Terzi
,
L.
,
2019
, “
Precision Computation of Wind Turbine Power Upgrades: An Aerodynamic and Control Optimization Test Case
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051205
.
37.
FACT SHEET: President Biden Signs Executive Order Catalyzing America’s Clean Energy Economy Through Federal Sustainability
,
2021
,
The White House
, https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/08/fact-sheet-president-biden-signs-executive-order-catalyzing-americas-clean-energy-economy-through-federal-sustainability/
38.
Mishnaevsky
,
L.
,
Branner
,
K.
,
Petersen
,
H.
,
Beauson
,
J.
,
McGugan
,
M.
, and
Sorensen
,
B.
,
2017
, “
Materials for Wind Turbine Blades: An Overview
,”
Materials (Basel)
,
10
(
11
), p.
1285
.
39.
Khalil
,
E. E.
,
ElHarriri
,
G.
, and
Abousabaa
,
M.
,
2018
, “
Heat Transfer Enhancement in Parabolic Trough Absorption Tube Using Twisted Tape Inserts
,”
Proceedings of the 2018 Joint Thermophysics and Heat Transfer Conference
,
Atlanta, GA
,
June 25–29
.
40.
Selim
,
O. M.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2020
, “
Experimental and Numerical Study on the Use of Guide Vanes in the Dilution Zone
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
083001
.
41.
Abousabae
,
M.
,
Amano
,
R. S.
, and
Casper
,
C.
,
2021
, “
Investigation of Liquid Droplet Flow Behavior in a Vertical Nozzle Chamber
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052108
.
42.
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Air Flow Acceleration Effect on Water Droplet Flow Behavior in Solid Rocket Motor
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082305
.
43.
Elgammal
,
T.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Enhancements of the Thermal Uniformity Inside a Gas Turbine Dilution Section Using Dimensional Optmization
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102102
.
44.
Mahu
,
R.
, and
Popescue
,
F.
,
2011
, “
NREL Phase VI Rotor Modeling and Simulation Using Ansys Fluent 12.1
,”
Tenth Young Researchers' Conference Materials Sciences and Engineering
,
Belgrade, Serbia
,
Dec. 12–23
.
45.
Aranake
,
A.
,
Lakshminarayan
,
V.
, and
Duraisamy
,
K.
,
2012
, “
Assessment of Transition Model and CFD Methodology for Wind Turbine Flows
,”
Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit
,
New Orleans, LA
,
June 25–28
.
46.
Zhang
,
R.
, and
Wu
,
V.
,
2012
, “
Aerodynamic Characteristics of Wind Turbine Blades With a Sinusoidal Leading Edge
,”
Wind Energy
,
15
(
3
), pp.
407
424
.
47.
Troldborg
,
N.
,
Zahle
,
F.
, and
Sorensen
,
N.
,
2016
, “
Simulations of Wind Turbine Rotor With Vortex Generators
,”
J. Phys. Conf. Ser.
,
753
(
2
), p.
9
.
48.
Hu
,
H.
,
Li
,
X.
, and
Gu
,
B.
,
2016
, “
Flow Characteristics Study of Wind Turbine Blade With Vortex Generators
,”
J. Aerosp. Eng.
,
2016
, pp.
1
11
.
49.
Johansen
,
J.
,
Sorensen
,
N.
,
Reck
,
M.
,
Hansen
,
M.
,
Stuermer
,
A.
,
Ramboer
,
J.
, and
Perivolaris
,
Y.
,
2005
, “
KNOW-BLADE Task-3.3 Report; Rotor Blade Computations With 3D Vortex Generators
.”
Riso National Laboratory, Roskilde
,
Denmark
.
50.
Gyatt
,
G.
,
1986
,
Development and Testing of Vortex Generators for Small Horizontal Axis Wind Turbines
,
AeroVironment, Inc.
,
Monrovia, CA
.
51.
Sørensen
,
N.
,
Zahle
,
F.
,
Bak
,
C.
, and
Vronsky
,
T.
,
2014
, “
Prediction of the Effect of Vortex Generators on Airfoil Performance
,”
J. Phys. Conf. Ser.
,
524
(
1
), p.
012019
.
52.
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2006
,
Aerodynamic Investigation of Winglets on Wind Turbine Blades Using CFD
,
Forskningscenter Risoe
,
Denmark
. Risoe-R No. 1543(EN).
You do not currently have access to this content.