Abstract

The age of easy oil is ending, and the industry started drilling in remote unconventional conditions. To help produce safer, faster, and most effective operations, the utilization of artificial intelligence and machine learning (AI/ML) has become essential. Unfortunately, due to the harsh environments of drilling and the data-transmission setup, a significant amount of the real-time data could defect. The quality and effectiveness of AI/ML models are directly related to the quality of the input data; only if the input data are good, the AI/ML-generated analytical and prediction models will be good. Improving the real-time data is therefore critical to the drilling industry. The objective of this paper is to propose an automated approach using eight statistical data-quality improvement algorithms on real-time drilling data. These techniques are Kalman filtering, moving average, kernel regression, median filter, exponential smoothing, lowess, wavelet filtering, and polynomial. A dataset of +150,000 rows is fed into the algorithms, and their customizable parameters are calibrated to achieve the best improvement result. An evaluation methodology is developed based on real-time drilling data characteristics to analyze the strengths and weaknesses of each algorithm which were highlighted. Based on the evaluation criteria, the best results were achieved using the exponential smoothing, median filter, and moving average. Exponential smoothing and median filter techniques improved the quality of data by removing most of the invalid data-points; the moving average removed more invalid data-points but trimmed the data range.

References

1.
Soares
,
C.
, and
Gray
,
K.
,
2019
, “
Real-Time Predictive Capabilities of Analytical and Machine Learning Rate of Penetration (ROP) Models
,”
J. Pet. Sci. Eng.
,
172
, pp.
934
959
.
2.
Al-AbdulJabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abdelgawad
,
K.
, and
Al-Majed
,
A.
,
2019
, “
A Robust Rate of Penetration Model for Carbonate Formation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p. 042903.
3.
Anemangely
,
M.
,
Ramezanzadeh
,
A.
,
Tokhmechi
,
B.
,
Molaghab
,
A.
, and
Mohammadian
,
A.
,
2018
, “
Drilling Rate Prediction From Petrophysical Logs and Mud Logging Data Using an Optimized Multilayer Perceptron Neural Network
,”
J. Geophys. Eng.
,
15
(
4
), pp.
1146
1159
.
4.
Elkatatny
,
S.
,
Tariq
,
Z.
, and
Mahmoud
,
M.
,
2016
, “
Real Time Prediction of Drilling Fluid Rheological Properties Using Artificial Neural Networks Visible Mathematical Model (White Box)
,”
J. Pet. Sci. Eng.
,
146
, pp.
1202
1210
.
5.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real-Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p. 032908.
6.
Wang
,
Y.
, and
Salehi
,
S.
,
2015
, “
Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p. 062903.
7.
Klyuchnikov
,
N.
,
Zaytsev
,
A.
,
Gruzdev
,
A.
,
Ovchinnikov
,
G.
,
Antipova
,
K.
,
Ismailova
,
L.
,
Muravleva
,
E.
, et al
,
2019
, “
Data-Driven Model for the Identification of the Rock Type at a Drilling bit
,”
J. Pet. Sci. Eng.
,
178
, pp.
506
516
.
8.
Agrawal
,
R.
,
Malik
,
A.
,
Samuel
,
R.
, and
Saxena
,
A.
,
2021
, “
Real-Time Prediction of Litho-Facies From Drilling Data Using an Artificial Neural Network: A Comparative Field Data Study With Optimizing Algorithms
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
043003
.
9.
Siddig
,
O. M.
,
Al-Afnan
,
S. F.
,
Elkatatny
,
S. M.
, and
Abdulraheem
,
A.
,
2021
, “
Drilling Data-Based Approach to Build a Continuous Static Elastic Moduli Profile Utilizing Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023001
.
10.
Gurina
,
E.
,
Klyuchnikov
,
N.
,
Zaytsev
,
A.
,
Romanenkova
,
E.
,
Antipova
,
K.
,
Simon
,
I.
,
Makarov
,
V.
, and
Koroteev
,
D.
,
2020
, “
Application of Machine Learning to Accidents Detection at Directional Drilling
,”
J. Pet. Sci. Eng.
,
184
, p.
106519
.
11.
Alshaikh
,
A. A.
,
Albassam
,
M. K.
,
Al Gharbi
,
S. H.
, and
Al-Yami
,
A. S.
,
2018
, “
Detection of Stuck Pipe Early Signs and the Way Toward Automation
,”
Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
,
Nov. 12–15
,
Society of Petroleum Engineers
, Paper No. SPE-192975-MS.
12.
Saadeldin
,
R.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2022
, “
Intelligent Model for Predicting Downhole Vibrations Using Surface Drilling Data During Horizontal Drilling
,”
ASME J. Energy Resour. Technol.
,
144
(
8
) p.
083002
.
13.
Løken
,
E. A.
,
Løkkevik
,
J.
, and
Sui
,
D.
,
2021
, “
Testing Machine Learning Algorithms for Drilling Incidents Detection on a Pilot Small-Scale Drilling Rig
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
124501
.
14.
Sabah
,
M.
,
Talebkeikhah
,
M.
,
Wood
,
D. A.
,
Khosravanian
,
R.
,
Anemangely
,
M.
, and
Younesi
,
A.
,
2019
, “
A Machine Learning Approach to Predict Drilling Rate Using Petrophysical and Mud Logging Data
,”
Earth Sci. Inform.
,
12
(
3
), pp.
319
339
.
15.
Lorena
,
A. C.
, and
de Carvalho
,
A. C.
,
2004
, “
Evaluation of Noise Reduction Techniques in the Splice Junction Recognition Problem
,”
Genet. Mol. Biol.
,
27
(
4
), pp.
665
672
.
16.
Garćia
,
L. P. F.
,
de Carvalho
,
A. C.
, and
Lorena
,
A. C.
,
2013
, “Noisy Data Set Identification,”
International Conference on Hybrid Artificial Intelligence Systems
,
Springer
,
Berlin, Heidelberg
.
17.
Ashok
,
P.
,
Ambrus
,
A.
, and
van Oort
,
E.
,
2013
, “
Automatic Sensor Data Validation: Improving the Quality and Reliability of Rig Data
,”
SPE Digital Energy Conference
,
The Woodlands, TX
,
Mar. 5–7
,
Society of Petroleum Engineers
, Paper No. SPE-163726-MS.
18.
Svensson
,
I.
,
Wooley
,
M.
, and
Halland
,
T.
,
2016
, “
Improving Data Quality in Witsml Data
,”
SPE Intelligent Energy International Conference and Exhibition
,
Aberdeen, Scotland, UK
,
Society of Petroleum Engineers
.
19.
Ashok
,
P.
,
Ambrus
,
A.
,
Ramos
,
D.
,
Lutteringer
,
J.
,
Behounek
,
M.
,
Yang
,
Y. L.
,
Thetford
,
T.
, and
Weaver
,
T.
,
2016
, “
A Step by Step Approach to Improving Data Quality in Drilling Operations: Field Trials in North America
,”
SPE Intelligent Energy International Conference and Exhibition
,
Aberdeen, Scotland, UK
,
Society of Petroleum Engineers
.
20.
Sadlier
,
A.
,
Blue
,
D.
, and
Halland
,
T.
,
2016
, “
Effective Operational Collaboration Delivers Substantial Real-Time Service Quality Improvements
,”
IADC/SPE Drilling Conference and Exhibition
,
Fort Worth, TX
,
Society of Petroleum Engineers
.
21.
Thorsen
,
A. K.
,
Saeverhagen
,
E.
, and
Svensson
,
I.
,
2014
, “
Enhanced Data Quality and Lowered Risk Utilizing Remote Operations
,”
SPE Intelligent Energy Conference & Exhibition
,
Utrecht, The Netherlands
,
Society of Petroleum Engineers
.
22.
Al-AbdulJabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Predicting Formation Tops While Drilling Using Artificial Intelligence
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
April
,
Society of Petroleum Engineers
, Paper No. SPE-181038-MS.
23.
Sabah
,
M.
,
Mehrad
,
M.
,
Ashrafi
,
S. B.
,
Wood
,
D. A.
, and
Fathi
,
S.
,
2021
, “
Hybrid Machine Learning Algorithms to Enhance Lost-Circulation Prediction and Management in the Marun Oil Field
,”
J. Pet. Sci. Eng.
,
198
, p.
108125
.
24.
Ashrafi
,
S. B.
,
Anemangely
,
M.
,
Sabah
,
M.
, and
Ameri
,
M. J.
,
2019
, “
Application of Hybrid Artificial Neural Networks for Predicting Rate of Penetration (ROP): A Case Study From Marun Oil Field
,”
J. Pet. Sci. Eng.
,
175
, pp.
604
623
.
25.
Rahm Erhard
,
D. H. H.
,
2000
, “
Data Cleaning: Problems and Current Approaches
,”
IEEE Data Eng. Bull.
,
23
(
4
), pp.
3
13
.
26.
Kim
,
Y.
, and
Bang
,
H.
,
2018
, “Introduction to Kalman Filter and Its Applications,”
Introduction and Implementations of the Kalman Filter
,
IntechOpen
,
London
.
27.
Musoff
,
H.
, and
Zarchan
,
P.
,
2009
, “
Fundamentals of Kalman Filtering: A Practical Approach
,”
Am. Inst. Aeronaut. Astronaut.
28.
Jung
,
J. Y.
,
Kang
,
D. O.
,
Choi
,
J. H.
, and
Bae
,
C. S.
,
2015
, “
D2D Distance Measurement Using Kalman Filter Algorithm for Distance-Based Service in an Office Environment
,”
2015 17th International Conference on Advanced Communication Technology (ICACT)
,
PyeongChang, South Korea
,
IEEE
.
29.
Clif
,
D.
,
2001
,
Moving Averages Simplified
, Vol.
1
,
Marketplace Books
,
Bronxville, NY
.
30.
Nadaraya
,
E. A.
,
1964
, “
On Estimating Regression
,”
Theory Probab. Its Appl.
,
9
(
1
), pp.
141
142
.
31.
Watson
,
G. S.
,
1964
, “
Smooth Regression Analysis
,”
Sankhya: Indian J. Stat.
, 26(4), pp.
359
372
.
32.
McCormick
,
C.
,
2014
, Kernel Regression. https://mccormickml.com/2014/02/26/kernel-regression
33.
Leondes
,
C. T.
,
1995
,
Multidimensional Systems: Signal Processing and Modeling Techniques: Advances in Theory and Applications
,
Elsevier
,
New York
.
34.
Cohen
,
R. A.
,
1999
, “
An Introduction to Proc Loess for Local Regression
,”
Proceedings of the Twenty-Fourth Annual SAS Users Group International Conference
,
Miami Beach, FL
,
April
, Paper No. 273,
Citeseer
35.
Thornley
,
D. J.
,
2006
, “
Anisotropic Multidimensional Savitzky Golay Kernels for Smoothing, Differentiation and Reconstruction
,” Department of Computing, Technical Report No. 8.
36.
SAS.
,
1999
,
SAS/STAT User’s Guide, Version 8
,
SAS Institute Incorporated
,
London
.
37.
Daubechies
,
I.
,
Lu
,
J.
, and
Wu
,
H.-T.
,
2011
, “
Synchrosqueezed Wavelet Transforms: An Empirical Mode Decomposition-Like Tool
,”
Appl. Comput. Harmon. Anal.
,
30
(
2
), pp.
243
261
.
38.
Selesnick
,
I. W.
,
Baraniuk
,
R. G.
, and
Kingsbury
,
N. C.
,
2005
, “
The Dual-Tree Complex Wavelet Transform
,”
IEEE Signal Process. Mag.
,
22
(
6
), pp.
123
151
.
39.
Agarwal
,
A.
,
2018
, Linear Regression Using Python. https://towardsdatascience.com/linear-regression-using-python-b136c91bf0a2
40.
Pardoe
,
I.
,
2018
, Applied Regression Analysis: Polynomial Regression. https://online.stat.psu.edu/stat462/node/158
41.
Al Gharbi
,
S. H.
, and
Al Zayer
,
M. R.
,
2015
, “
Automated Real Time Data Cleansing and Summarization; Case Study on Drilling Hook Load Real Time Data
,”
SPE Middle East Intelligent Oil and Gas Conference and Exhibition
,
Abu Dhabi, UAE
,
September
,
Society of Petroleum Engineers
, Paper No. SPE-176755-MS.
42.
Majeed
,
F. A.
,
Karki
,
H.
,
Magid
,
Y. L. A.
, and
Karkoub
,
M.
,
2010
, “
Analysis of the Method of Black Box Modeling of Drill String Dynamics by Least Squares Method
,”
Proceedings of the 2010 International Conference on Mechanical and Electrical Technology
,
Singapore
,
September
,
IEEE
, pp.
257
261
.
You do not currently have access to this content.