Abstract

Tertiary oil recovery technologies, for example, alkaline/surfactant/polymer (ASP) flooding, can enhance oil recovery as an important oil displacement technology noteworthy in the present oilfields. However, it is the fact that the produced emulsion droplets have strong electronegativity, which will lead to the destabilization of electric field and affect the dehydration effect in the process of electric dehydration. This article innovatively proposed an efficient demulsification scheme, which uses polyaluminum chloride (PAC) as a chemical regulator to control electric field destabilization through the charge neutralization mechanism and then introduces demulsifier to promote oil–water separation. Furthermore, the dehydration temperature, power supply mode, and electric field parameters are optimized so as to achieve superior dehydration effect of ASP flooding produced liquid. The results indicate that PAC as a chemical regulator by exerting charge neutralization and electrostatic adsorption mechanism could reduce the electronegativity of the emulsified system, decrease the peak current of dehydration, shorten the duration of peak current of dehydration, improve the response performance of the electric field, and increase dehydration rate in the ASP flooding dehydration process. When the demulsifier dosage is 100–120 mg/l, using the composite separation process with the dehydration temperature of 45–50 °C for the thermochemical separation stage and 60 °C in the electrochemical dehydration stage and AC–DC composite electric field or pulse electric field can achieve better dehydration effect. The investigations in this study will provide support and basis for the efficient treatment of ASP flooding produced emulsion.

References

1.
Olajire
,
A. A.
,
2014
, “
Review of ASP EOR (Alkaline Surfactant Polymer Enhanced oil Recovery) Technology in the Petroleum Industry: Prospects and Challenges
,”
Energy
,
77
, pp.
963
982
.
2.
Sun
,
L. D.
,
Wu
,
X. L.
,
Zhou
,
W. F.
,
Li
,
X. J.
, and
Han
,
P. H.
,
2018
, “
Technologies of Enhancing oil Recovery by Chemical Flooding in Daqing Oilfield
,”
Pet. Explor. Dev.
,
45
(
4
), pp.
636
645
.
3.
Yuan
,
S. Y.
, and
Wang
,
Q.
,
2018
, “
New Progress and Prospect of Oilfields Development Technologies in China
,”
Pet. Explor. Dev.
,
45
(
4
), pp.
657
668
.
4.
James
,
J. S.
,
2014
, “
A Comprehensive Review of Alkaline-Surfactant-Polymer (ASP) Flooding
,” A
sia-Pac. J. Chem. Eng.
,
9
(
4
), pp.
471
489
.
5.
Fang
,
X. X.
,
Feng
,
H.
,
Wang
,
H.
, and
Wang
,
Y. H.
,
2021
, “
Study on Origin, Classification, and Identification of Complex Porous Carbonate Reservoir: A Case Study of the Middle Cretaceous Mishrif Formation in W Oil Field
,”
Carbonates Evaporites
,
36
(
4
), p.
72
.
6.
Zhong
,
H. Y.
,
Yang
,
T. B.
,
Yin
,
H. J.
,
Lu
,
J.
,
Zhang
,
K.
, and
Fu
,
C. Q.
,
2020
, “
Role of Alkali Type in Chemical Loss and ASP-Flooding Enhanced Oil Recovery in Sandstone Formations
,”
SPE Reservoir Eval. Eng.
,
23
(
2
), pp.
431
445
.
7.
Guo
,
H.
,
Li
,
Y. Q.
,
Wang
,
F. Y.
,
Yu
,
Z. Y.
,
Chen
,
Z. W.
,
Wang
,
Y. S.
, and
Gao
,
X.
,
2017
, “
ASP Flooding: Theory and Practice Progress in China
,”
J. Chem.
,
2017
(
1
), pp.
1
18
.
8.
Wang
,
Z. H.
,
Liu
,
X. Y.
,
Luo
,
H.
,
Peng
,
B. L.
,
Sun
,
X. T.
,
Liu
,
Y.
, and
Rui
,
Z. H.
,
2021
, “
Foaming Properties and Foam Structure of Produced Liquid in Alkali/Surfactant/Polymer Flooding Production
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
103005
.
9.
Li
,
B.
,
Fan
,
Y. X.
,
Sun
,
Z. Q.
,
Wang
,
Z. B.
, and
Zhu
,
L. Y.
,
2017
, “
Effects of High-Frequency Pulsed Electrical Field and Operating Parameters on Dehydration of SAGD Produced Ultra-Heavy Oil
,”
Powder Technol.
,
316
, pp.
338
344
.
10.
Tarantsev
,
K. V.
, and
Tarantseva
,
K. R.
,
2017
, “
Influence of Electric Field Frequency on the Process of Destruction of Water-Oil Emulsions in Electric Dehydrators
,”
Chem. Pet. Eng.
,
53
(
7–8
), pp.
1
4
.
11.
Yang
,
D. H.
,
Sun
,
Y. X.
,
Ghadiri
,
M.
,
Wu
,
H. Y.
,
Qiao
,
H. M.
,
He
,
L.
,
Luo
,
X. M.
, and
Lv
,
Y. L.
,
2019
, “
Effect of Hydrolyzed Polyacrylamide Used in Polymer Flooding on Droplet–Interface Electro-Coalescence: Variation of Critical Electric Field Strength of Partial Coalescence
,”
Sep. Purif. Technol.
,
227
, p.
115737
.
12.
Wang
,
Z. H.
,
Lin
,
X. Y.
,
Yu
,
T. Y.
,
Hu
,
Z. W.
,
Xu
,
M. M.
, and
Yu
,
H. T.
,
2016
, “
Case History of Dehydration-Technology Improvement for HCPF Production in the Daqing Oil Field
,”
Oil Gas Facil.
,
5
(
6
), pp.
1
12
.
13.
Dalmazzone
,
C.
,
2010
, “
Development of a Methodology for the Optimization of Dehydration of Extraheavy-Oil Emulsions
,”
SPE J.
,
15
(
3
), pp.
726
736
.
14.
Wang
,
Z. H.
,
Xu
,
Y. F.
,
Liu
,
Y.
,
Liu
,
X. Y.
, and
Rui
,
Z. H.
,
2020
, “
Molecular Dynamics-Based Simulation on Chemical Flooding Produced Emulsion Formation and Stabilization: A Critical Review
,”
Arabian J. Sci. Eng.
,
45
(
9
), pp.
7161
7173
.
15.
Wang
,
K. L.
,
Zhang
,
B. W.
, and
Li
,
G.
,
2018
, “
Effects of Weak-Alkali ASP Composition on the Stability of O/W Emulsions
,”
Energy Sources, Part A
,
41
(
4
), pp.
1
13
.
16.
Li
,
G.
,
Guo
,
S.
,
Wang
,
S.
, and
Lu
,
B.
,
2014
, “
Dewatering and Recycling of Aged Emulsions From Polymer Flooding
,”
Pet. Sci. Technol.
,
32
(
15
), pp.
1876
1885
.
17.
Eow
,
J.
,
2002
, “
Electrostatic Enhancement of Coalescence of Water Droplets in Oil: A Review of the Technology
,”
Chem. Eng. J.
,
85
(
2–3
), pp.
357
368
.
18.
Jiang
,
X.
,
Zhou
,
X.
,
Li
,
C.
,
Wan
,
Z.
,
Yao
,
L.
, and
Gao
,
P.
,
2019
, “
Adsorption of Copper by Flocculated Chlamydomonas Microsphaera Microalgae and Polyaluminium Chloride in Heavy Metal-Contaminated Water
,”
J. Appl. Phycol.
,
31
(
2
), pp.
1143
1151
.
19.
Guo
,
K.
,
Gao
,
B.
,
Yue
,
Q.
,
Xu
,
X.
,
Li
,
R.
, and
Shen
,
X.
,
2018
, “
Characterization and Performance of a Novel Lignin-Based Flocculant for the Treatment of Dye Wastewater
,”
Int. Biodeterior. Biodegrad.
,
133
, pp.
99
107
.
20.
Yusoff
,
M. S.
,
Aziz
,
H. A.
,
Zamri
,
M. F.
,
Suja’
,
F.
,
Abdullah
,
A. Z.
, and
Basri
,
N. E. A.
,
2018
, “
Floc Behavior and Removal Mechanisms of Cross-Linked Durio Zibethinus Seed Starch as a Natural Flocculant for Landfill Leachate Coagulation-Flocculation Treatment
,”
Waste Manage.
,
74
, pp.
362
372
.
21.
Ma
,
J. Y.
,
Jiang
,
L. Y.
,
Fu
,
X.
,
Ding
,
L.
,
Zhou
,
S.
, and
Wang
,
Q. J.
,
2018
, “
Flocculation Property of Composite Flocculants PAC/CPAM for Polluted Landscape Water Pretreatment
,”
Desalin. Water Treat.
,
136
, pp.
212
225
.
22.
Tang
,
Y. N.
,
Hu
,
X. Y.
,
Cai
,
J.
,
Xi
,
Z. H.
, and
Yang
,
H.
,
2020
, “
An Enhanced Coagulation Using a Starch-Based Coagulant Assisted by Polysilicic Acid in Treating Simulated and Real Surface Water
,”
Chemosphere
,
259
, p.
127464
.
23.
Sun
,
Y. X.
,
Liu
,
Y.
,
Chen
,
J. Q.
,
Huang
,
Y.
,
Lu
,
H.
, and
Yuan
,
W.
,
2021
, “
Physical Pretreatment of Petroleum Refinery Wastewater Instead of Chemicals Addition for Collaborative Removal of Oil and Suspended Solids
,”
J. Cleaner Prod.
,
278
, p.
123821
.
24.
Liu
,
G. L.
,
Zhang
,
F. S.
,
Qu
,
Y. Z.
,
Liu
,
H.
, and
Geng
,
D. S.
,
2017
, “
Application of PAC and Flocculants for Improving Settling of Solid Particles in Oilfield Wastewater With High Salinity and Ca2+
,”
Water Sci. Technol.
,
76
(
6
), pp.
1399
1408
.
25.
Patidar
,
A. K.
,
Sharma
,
A.
, and
Joshi
,
D.
,
2020
, “
Formulation of Cellulose Using Groundnut Husk as an Environment-Friendly Fluid Loss Retarder Additive and Rheological Modifier Comparable to PAC for WBM
,”
J. Pet. Explor. Prod. Technol.
,
10
(
8
), pp.
3449
3466
.
26.
Fang
,
H. B.
,
2009
, “
Investigation on Oil-Water Interfacial Properties and Emulsion Stability on Foam-Polymer Flooding Produced Liquid in ChengDong Oilfield
,”
Acta Petrol. Sin.
,
25
(
5
), pp.
736
741
.
27.
Sun
,
Y. X.
,
Yang
,
D. H.
,
He
,
L. M.
,
Luo
,
X. M.
, and
Lv
,
Y. L.
,
2019
, “
Influence of Alkali Concentration, Electric Waveform, and Frequency on the Critical Electric Field Strength of Droplet–Interface Partial Coalescence
,”
Chem. Eng. Sci.
,
208
, p.
115136
.
28.
Cao
,
R. Y.
,
Cheng
,
L. S.
, and
Ma
,
Z.
,
2014
, “
Model for Rheological Behavior of Crude Oil and Alkali-Surfactant-Polymer Emulsion
,”
Open Fuels Energy Sci. J.
,
7
(
1
), pp.
55
61
.
29.
Numin
,
M. S.
,
Jumbri
,
K.
,
Ramli
,
A.
, and
Borhan
,
N.
,
2020
, “
Microemulsion Rheological Analysis of Alkaline, Surfactant, and Polymer in Oil-Water Interface
,”
Processes
,
8
(
7
), p.
762
.
30.
Zhang
,
D. W.
,
Chen
,
Z. X.
,
Ren
,
L.
,
Meng
,
X. C.
, and
Gu
,
W. G.
,
2020
, “
Study on Stability of Produced Water in ASP Flooding Based on Critical Micellar Theory
,”
Polym. Bull.
,
17
, pp.
1
14
.
31.
Wang
,
Z. H.
,
Lin
,
X. Y.
,
Rui
,
Z. H.
,
Xu
,
M. M.
, and
Zhan
,
S. Y.
,
2017
, “
The Role of Shearing Energy and Interfacial Gibbs Free Energy in the Emulsification Mechanism of Waxy Crude Oil
,”
Energies
,
10
(
5
), p.
721
.
32.
Khan
,
M. K. A.
,
Khan
,
J. A.
,
Ullah
,
H.
,
Al-Kayiem
,
H.
,
Irawan
,
S.
, and
Irfan
,
M.
,
2021
, “
De-emulsification and Gravity Separation of Micro-Emulsion Produced With Enhanced Oil Recovery Chemicals Flooding
,”
Energies
,
14
(
8
), p.
2249
.
33.
Wang
,
Z. H.
,
Bai
,
Y.
,
Lou
,
Y. H.
, and
ZhuGe
,
X. L.
,
2018
, “
Emulsification and Demulsification of Produced Liquid in Surfactant/Polymer Combination Flooding
,”
J. Petrochem. Univ.
,
31
(
6
), pp.
33
40
. (in Chinese)
34.
Tang
,
S. Y.
,
1989
, “
Effect of pH on Precipitation/Redissolution of Petroleum Sulfonates in Aqueous Solutions Containing Multivalent Cations
,”
Oilfield Chem.
,
6
(4), pp.
327
331
. (in Chinese)
You do not currently have access to this content.