Abstract

Fuel injection system influences the spray characteristics to achieve faster combustion and better control over emissions. The combination of orifice number, diameter, injection duration, and rotation is suggested for better emission control and efficiency. In the present work, a novel self-rotating injector is designed and fabricated. Simulation is performed in three-dimensional closed-cycle geometry of a 661 cc diesel engine for static as well as rotating fuel injection having three, five, and nine holes by varying the rotational speed of 1500 and 2500 rpm, orifice diameter, and injection duration to ensure the same injection velocity. The three-hole rotating cases were studied and compared with static numerical simulation. The results found that due to the rotational effect, the engine’s thermal efficiency improved by 3.82% and 5.11% while the NOx emissions decreased by 2.34% and 5.57% for 1500 and 2500 rpm, respectively, at the cost of carbon monoxide and soot emissions. Increasing the rotational speed was found to improve temperature uniformity at higher speeds, thus increases the efficiency and lower NOx. By increasing the number of orifice holes, it was observed that both thermal efficiency and NOx increased. Controlling the primary and diffusion combustion, it is possible to improve the efficiency without increasing NOx emissions. This was possible with a combination of rotating injectors and varying the start of injection. The fabricated self-rotating nozzle based on the above simulations was found to perform better than the static injector under no-load conditions.

References

1.
Wu
,
X.
,
Deng
,
J.
,
Cui
,
H.
,
Xue
,
F.
,
Zhou
,
L.
, and
Luo
,
F.
,
2016
, “
Numerical Simulation of Injection Rate of Each Nozzle Hole of Multi-Hole Diesel Injector
,”
Appl. Therm. Eng.
,
108
, pp.
793
797
.
2.
Yu
,
W.
,
Yang
,
W.
, and
Zhao
,
F.
,
2017
, “
Investigation of Internal Nozzle Flow, Spray and Combustion Characteristics Fueled With Diesel, Gasoline and Wide Distillation Fuel (WDF) Based on a Piezoelectric Injector and a Direct Injection Compression Ignition Engine
,”
Appl. Therm. Eng.
,
114
, pp.
905
920
.
3.
Gorji-Bandpy
,
M.
,
Soleimani
,
S.
, and
Ganji
,
D. D.
,
2009
, “
The Effect of Different Injection Strategies and Intake Conditions on the Emissions Characteristics in a Diesel Engine
,”
Int. J. Veh. Technol.
,
2009
, pp.
1
11
.
4.
Siewert
,
R. M.
,
2007
, “
Spray Angle and Rail Pressure Study for Low NOx Diesel Combustion
,” SAE Technical Papers, 2007-01-0122.
5.
Abdelghaffar
,
W.
,
Karimi
,
K.
, and
Heikal
,
M.
,
2007
, “
Fuel Spray Penetration in High Pressure Diesel Engines
,” SAE Technical Paper, 2007-01-0066.
6.
Arunprasad
,
S.
, and
Balusamy
,
T.
,
2018
, “
Experimental Investigation on the Performance and Emission Characteristics of a Diesel Engine by Varying the Injection Pressure and Injection Timing Using Mixed Biodiesel
,”
Int. J. Green Energy
,
15
(
6
), pp.
376
384
.
7.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032201
.
8.
Mousavi
,
S. M.
,
Saray
,
R. K.
,
Bahlouli
,
K.
,
Poorghasemi
,
K.
,
Maghbouli
,
A.
, and
Sadeghlu
,
A.
,
2019
, “
Effects of Pilot Diesel Injection Strategies on Combustion and Emission Characteristics of Dual-Fuel Engines at Part Load Conditions
,”
Fuel
,
258
, p.
116153
.
9.
Abdellatif
,
Y. M.
,
Saker
,
A. T.
,
Elbashir
,
A. M.
, and
Ahmed
,
S. F.
,
2021
, “
Combustion and Emissions of a Gas-to-Liquid Diesel Engine Utilizing Optimized Spiral-Helical Intake Manifold Designs
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062308
.
10.
Tang
,
M.
,
Pei
,
Y.
,
Guo
,
H.
,
Zhang
,
Y.
,
Torelli
,
R.
,
Probst
,
D.
,
Fütterer
,
C.
, and
Traver
,
M.
,
2021
, “
Piston Bowl Geometry Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062309
.
11.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2020
, “
A Numerical Study to Control the Combustion Performance of a Syngas-Fueled HCCI Engine at Medium and High Loads Using Different Piston Bowl Geometry and Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082301
.
12.
Sok
,
R.
,
Yoshimura
,
K.
,
Nakama
,
K.
, and
Kusaka
,
J.
,
2021
, “
Experimental and Numerical Analysis on the Influences of Direct Fuel Injection in to Oxygen-Depleted Environment of a Homogeneous Charge Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122302
.
13.
Choi
,
C. Y.
, and
Reitz
,
R. D.
,
1999
, “
An Experimental Study on the Effects of Oxygenated Fuel Blends and Multiple Injection Strategies on DI Diesel Engine Emissions
,”
Fuel
,
78
(
11
), pp.
1303
1317
.
14.
Yang
,
B.
, and
Zeng
,
K.
,
2018
, “
Effects of Natural Gas Injection Timing and Split Pilot Fuel Injection Strategy on the Combustion Performance and Emissions in a Dual-Fuel Engine Fueled With Diesel and Natural Gas
,”
Energy Convers. Manage.
,
168
, pp.
162
169
.
15.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
.
16.
Lin
,
G.-H.
, and
Kuo
,
C.-P.
,
2013
, “
Effects of the Injection Timing on the Engine Performance and the Exhaust Emissions of a Diesel Engine Fuelled by Tyre Pyrolysis Oil-Diesel Blends
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
227
(
8
), pp.
1153
1167
.
17.
Xu
,
Z.
,
Li
,
X.
,
Guan
,
C.
, and
Huang
,
Z.
,
2014
, “
Effects of Injection Timing on Exhaust Particle Size and Nanostructure on a Diesel Engine at Different Loads
,”
J. Aerosol Sci.
,
76
, pp.
28
38
.
18.
Lapuerta
,
M.
,
Armas
,
O.
, and
Hernández
,
J. J.
,
1999
, “
Effect of the Injection Parameters of a Common Rail Injection System on Diesel Combustion Through Thermodynamic Diagnosis
,”
SAE Trans. Pap.
,
108
(
3
), pp.
206
213
.
19.
Xu
,
Z.
,
Li
,
X.
,
Guan
,
C.
, and
Huang
,
Z.
,
2014
, “
Effects of Injection Pressure on Diesel Engine Particle Physico-Chemical Properties
,”
Aerosol Sci. Technol.
,
48
(
2
), pp.
128
138
.
20.
Singh
,
A. P.
,
Sharma
,
N.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Premixed Ratio on Mineral Diesel-Methanol Fueled Reactivity Controlled Compression Ignition Mode Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122301
.
21.
Timoney
,
D. J.
,
Brophy
,
B.
, and
Smith
,
W. J.
,
1997
, “
Heat Release and Emissions Results From a D.I. Diesel With Special Shrouded Intake Valves
,” SAE Technical Papers, pp.
183
192
.
22.
Kang
,
K. Y.
, and
Reitz
,
R. D.
,
1999
, “
The Effect of Intake Valve Alignment on Swirl Generation in a DI Diesel Engine
,”
Exp. Therm. Fluids Sci.
,
20
(
2
), pp.
94
103
.
23.
Khan
,
S.
,
Panua
,
R.
, and
Bose
,
P. K.
,
2018
, “
Combined Effects of Piston Bowl Geometry and Spray Pattern on Mixing, Combustion and Emissions of a Diesel Engine: A Numerical Approach
,”
Fuel
,
225
, pp.
203
217
.
24.
Gugulothu
,
S. K.
,
2020
, “
Effect of Piston Bowl Geometry Modification and Compression Ratio on the Performance and Emission Characteristics of DI Diesel Engine
,”
SN Appl. Sci.
,
2
(
8
), p.
1399
.
25.
Yadav
,
A. K.
,
Khan
,
M. E.
, and
Pal
,
A.
,
2017
, “
Biodiesel Production From Oleander (Thevetia peruviana) Oil and Its Performance Testing on a Diesel Engine
,”
Korean J. Chem. Eng.
,
34
(
2
), pp.
340
345
.
26.
Yadav
,
A. K.
,
Khan
,
O.
, and
Khan
,
M. E.
,
2018
, “
Utilization of High FFA Landfill Waste (Leachates) as a Feedstock for Sustainable Biodiesel Production: Its Characterization and Engine Performance Evaluation
,”
Environ. Sci. Pollut. Res. Int.
,
25
(
32
), pp.
32312
32320
.
27.
Yadav
,
A. K.
,
Dewangan
,
A.
, and
Mallick
,
A.
,
2018
, “
Effect of n-Butanol and Diethyl Ether on Performance and Emission Characteristics of a Diesel Engine Fueled With Diesel—Pongamia Biodiesel Blend
,”
J. Energy Eng.
,
144
(
6
), p.
04018062
.
28.
Klomp
,
E. D.
, and
Cornelius
,
W.
,
1985
, “Fuel Injection Nozzle With Auto-Rotating Tip,” US Patent No. US4502635A.
29.
Sjöberg
,
M.
,
2001
, “
The Rotating Injector as a Tool for Exploring DI Diesel Combustion and Emission Formation Processes
,”
Doctoral thesis
,
KTH Royal Institute of Technology
,
Stockholm, Sweden.
30.
Sjöberg
,
M.
,
Ångström
,
H.
,
Konstanzer
,
D.
, and
Thorin
,
O.
,
1998
, “
The Rotating Injector, a New System for Diesel Combustion
,”
SAE Trans.
,
107
, pp.
2196
2211
.
31.
Choi
,
S. M.
,
Jang
,
S. H.
,
Lee
,
D. H.
, and
You
,
G. W.
,
2010
, “
Spray Characteristics of the Rotating Fuel Injection System of a Micro-Jet Engine
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
551
558
.
32.
Chandrasekar
,
P.
,
Prasad
,
N. S.
,
Balamurugan
,
V.
, and
Sudharsan
,
N. M.
,
2020
, “
Design and Performance Evaluation of a Novel Self-Rotating Fuel Injector Using Computational Fluid Dynamics—A Preliminary Study
,”
Therm. Sci.
,
24
(
1A
), pp.
271
280
.
33.
Pichandi
,
C.
, and
Sudharsan
,
N. M.
, 2021, “
Performance Enhancement of a Diesel Engine With Rotating Injector—A Numerical Study
,”
J. Eng. Res.
34.
Zhang
,
X.
,
Moon
,
S.
,
Gao
,
J.
,
Dufresne
,
E. M.
,
Fezzaa
,
K.
, and
Wang
,
J.
,
2016
, “
Experimental Study on the Effect of Nozzle Hole-to-Hole Angle on the Near-Field Spray of Diesel Injector Using Fast X-Ray Phase-Contrast Imaging
,”
Fuel
,
185
, pp.
142
150
.
35.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
36.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1986
, “
Effect of Drop Breakup on Fuel Sprays
,”
SAE Trans.
,
95
(
3
), pp.
218
227
.
37.
Shearer
,
A. J.
, and
Groff
,
E. G.
,
1984
, “
Injection System Effects on Oscillating-Poppet-in-Injector Sprays
,”
Proceedings of the ASME Diesel and Gas Engine Power Division Conference
,
Oct. 7–9
,
A. A.
Zagotta
, ed.,
New York
, pp.
33
42
.
38.
Nicholls
,
J. A.
,
1972
, “
Stream and Droplet Breakup by Shock Waves
,” NASA SP–194,
D. T.
Harrjeand
, and
F. H.
Reardon
, eds., pp.
126
128
.
39.
Bai
,
C.
, and
Gosman
,
A. D.
,
1995
, “
Development of Methodology for Spray Impingement Simulation
,”
SAE Trans.
,
104
(
3
), pp.
550
568
.
40.
Margot
,
X.
,
Payri
,
R.
,
Gil
,
A.
,
Chavez
,
M.
, and
Pinzello
,
A.
,
2008
, “Combined CFD-Phenomenological Approach to the Analysis of Diesel Sprays Under Non-Evaporative Conditions,” SAE Technical Paper Series, 2008-01-0962.
41.
Maurya
,
R. K.
, and
Mishra
,
P.
,
2017
, “
Parametric Investigation on Combustion and Emissions Characteristics of a Dual Fuel (Natural Gas Port Injection and Diesel Pilot Injection) Engine Using 0-D SRM and 3D CFD Approach
,”
Fuel
,
210
, pp.
900
913
.
42.
Cordiner
,
S.
,
Gambino
,
M.
,
Iannaccone
,
S.
,
Rocco
,
V.
, and
Scarcelli
,
R.
,
2008
, “
Numerical and Experimental Analysis of Combustion and Exhaust Emissions in a Dual-Fuel Diesel/Natural Gas Engine
,”
Energy Fuels
,
22
(
3
), pp.
1418
1424
.
43.
Angelberger
,
C.
,
Poinsot
,
T.
, and
Delhay
,
B.
,
1997
, “Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations,” SAE Technical Paper 972881.
44.
Delphi
,
2012
,
Worldwide Emissions Standards—Heavy Duty and Off-Highway Vehicles
,
Delphi
,
Troy, MI
.
You do not currently have access to this content.