Abstract

The maximum generated power of automobile exhaust thermoelectric generator (AETEG) can be enhanced by applying inserted fins to its heat exchanger, because the temperature difference of thermoelectric modules (TEMs) is increased. However, the added heat exchanger will result in undesired backpressure, which may deteriorate the performance of the internal combustion engine (ICE). To evaluate the backpressure on the performance of both the ICE and the AETEG, the model of ICE integrated with AETEG was established with the GT-power software and validated with the AETEG test bench. The heat exchangers with chaos shape and fishbone shape were proposed, their pressure drop with different engine speeds was studied, and their effects on the performance of both the AETEG and the ICE were analyzed. The results show that compared with the fishbone-shaped structure, the pressure drop of chaos-shaped heat exchanger is larger at the same engine speed, which contributes to the increased maximum power and hot side temperature of the AETEG. Moreover, compared with the ICE without heat exchanger, the brake torque, brake power, volumetric efficiency, pumping mean effective pressure, CO emission, and CO2 emission of the ICE assembled with chaos-shaped and fishbone-shaped heat exchanger reduce, and the corresponding brake-specific fuel consumption increase because of the raised backpressure caused by the heat exchanger.

References

1.
Jaziri
,
N.
,
Boughamoura
,
A.
,
Müller
,
J.
,
Mezghani
,
B.
,
Tounsi
,
F.
, and
Ismail
,
M.
,
2020
, “
A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications
,”
Energy Rep.
,
6
(
7
), pp.
264
287
.
2.
Quan
,
R.
,
Li
,
T.
,
Yue
,
Y.
,
Chang
,
Y.
, and
Tan
,
B.
,
2020
, “
Experimental Study on a Thermoelectric Generator for Industrial Waste Heat Recovery Based on a Hexagonal Heat Exchanger
,”
Energies
,
12
(
13
), p. 3137.
3.
Fernández-Yáñez
,
P.
,
Armas
,
O.
,
Kiwan
,
R.
,
Stefanopoulou
,
A. G.
, and
Boehman
,
A. L.
,
2018
, “
A Thermoelectric Generator in Exhaust Systems of Spark-Ignition and Compression-Ignition Engines. A Comparison With an Electric Turbo-Generator
,”
Appl. Energy
,
229
, pp.
80
87
.
4.
Willars-Rodríguez
,
F. J.
,
Chávez-Urbiola
,
E. A.
,
Vorobiev
,
P.
, and
Vorobiev
,
Y. V.
,
2017
, “
Investigation of Solar Hybrid System With Concentrating Fresnel Lens, Photovoltaic and Thermoelectric Generators
,”
Int. J. Energy Res.
,
41
(
3
), pp.
377
388
.
5.
Demir
,
M. E.
, and
Dincer
,
I.
,
2017
, “
Performance Assessment of a Thermoelectric Generator Applied to Exhaust Waste Heat Recovery
,”
Appl. Therm. Eng.
,
120
, pp.
694
707
.
6.
Meng
,
F. K.
,
Chen
,
L. G.
,
Feng
,
Y. L.
, and
Xiong
,
B.
,
2017
, “
Thermoelectric Generator for Industrial Gas Phase Waste Heat Recovery
,”
Energy
,
135
, pp.
83
90
.
7.
Proto
,
A.
,
Bibbo
,
D.
,
Cerny
,
M.
,
Vala
,
D.
,
Kasik
,
V.
,
Peter
,
L.
,
Conforto
,
S.
,
Schmid
,
M.
, and
Penhaker
,
M.
,
2018
, “
Thermal Energy Harvesting on the Bodily Surfaces of Arms and Legs Through a Wearable Thermo-Electric Generator
,”
Sensors
,
6
(
18
), p. 1927.
8.
Kim
,
Y.
,
Gu
,
H. M.
,
Kim
,
C.
,
Choi
,
H.
,
Lee
,
G.
,
Kim
,
S.
,
Yi
,
K.
,
Lee
,
S.
, and
Cho
,
B.
,
2018
, “
High-Performance Self-Powered Wireless Sensor Node Driven by a Flexible Thermoelectric Generator
,”
Energy
,
162
, pp.
526
533
.
9.
Leonov
,
V.
,
2013
, “
Thermoelectric Energy Harvesting of Human Body Heat for Wearable Sensors
,”
IEEE Sens. J.
,
13
(
6
), pp.
2284
2291
.
10.
Kim
,
T. Y.
,
Negash
,
A.
, and
Cho
,
G.
,
2017
, “
Direct Contact Thermoelectric Generator (DCTEG): A Concept for Removing the Contact Resistance Between Thermoelectric Modules and Heat Source
,”
Energy Convers. Manage.
,
142
, pp.
20
27
.
11.
Champier
,
D.
,
2017
, “
Thermoelectric Generators: A Review of Applications
,”
Energy Convers. Manage.
,
140
, pp.
167
181
.
12.
Jouhara
,
H.
,
Żabnieńska-Góra
,
A.
,
Khordehgah
,
N.
,
Doraghi
,
Q.
,
Ahmad
,
L.
,
Norman
,
L.
,
Axcell
,
B.
,
Wrobel
,
L.
, and
Dai
,
S.
,
2021
, “
Thermoelectric Generator (TEG) Technologies and Applications
,”
Int. J. Thermofluids
,
9
(
2
), p. 100063.
13.
Tomarchio
,
A. J.
,
1964
, “
A Feasibility Study of Replacing an Electrical Generator of a Standard American Automobile With a Thermoelectric Generator
,”
Thesis
,
Clarkson College of Technology
,
Potsdam, NY
.
14.
Yang
,
J. H.
, and
Stabler
,
F. R.
,
2009
, “
Automotive Applications of Thermoelectric Materials
,”
J. Electron. Mater.
,
38
(
7
), pp.
1245
1251
.
15.
Brito
,
F. P.
,
Alves
,
A.
,
Pires
,
J. M.
,
Martins
,
L. B.
,
Martins
,
J.
,
Oliveira
,
J.
,
Teixeira
,
J.
,
Goncalves
,
L. M.
, and
Hall
,
M. J.
,
2016
, “
Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle
,”
J. Electron. Mater.
,
45
(
3
), pp.
1846
1870
.
16.
Lan
,
S.
,
Yang
,
Z.
,
Stobart
,
R.
, and
Chen
,
R.
,
2018
, “
Prediction of the Fuel Economy Potential for a Skutterudite Thermoelectric Generator in Light-Duty Vehicle Applications
,”
Appl. Energy
,
231
, pp.
68
79
.
17.
Temizer
,
I.
, and
Ilkilic
,
C.
,
2016
, “
The Performance and Analysis of the Thermoelectric Generator System Used in Diesel Engines
,”
Renew. Sustain. Energy Rev.
,
63
, pp.
141
151
.
18.
Quan
,
R.
,
Wang
,
C. J.
,
Wu
,
F.
,
Chang
,
Y. F.
, and
Deng
,
Y. D.
,
2020
, “
Parameter Matching and Optimization of an ISG Mild Hybrid Powertrain Based on an Automobile Exhaust Thermoelectric Generator
,”
J. Electron. Mater.
,
49
(
5
), pp.
2734
2746
.
19.
Quan
,
R.
,
Liu
,
G.
,
Wang
,
C.
,
Zhou
,
W.
,
Huang
,
L.
, and
Deng
,
Y.
,
2018
, “
Performance Investigation of an Exhaust Thermoelectric Generator for Military SUV Application
,”
Coatings
,
8
(
1
), p. 45.
20.
Seldon
,
W.
,
Shoeb
,
A.
,
Schimmel
,
D.
, and
Cromas
,
J.
,
2017
, “Experimental GT-Power Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Exhaust System of a Naturally Aspirated Engine,” SAE Technical Paper, Warrendale, PA, 2017–01–1794.
21.
Menacer
,
B.
, and
Bouchetara
,
M.
,
2015
, “
Validation of a Zero-Dimensional Model for Prediction of Engine Performances With FORTRAN and GT-Power Software
,”
Jordan J. Mech. Ind. Eng.
,
9
(
4
), pp.
241
252
.
22.
Avelar
,
F. T. M.
,
Filho
,
F. A. R.
,
Da Costa
,
R. B.
,
Duarte
,
V. F.
,
Avelar
,
I. T. M.
,
De Sousa Gama
,
H. B.
, and
De Souza
,
J. L. F.
,
2020
, “Numerical Model of SI Engine Using GT-Power Code,” SAE Technical Paper, Warrendale, PA, 2019-36-0170.
23.
Wang
,
J.
, and
Wang
,
Y.
,
2016
, “
Study and Application of Performance Optimization for General Purpose Engine Based on GT-Power Software
,”
J. Softw. Eng.
,
10
(
1
), pp.
54
65
.
24.
Zhu
,
D. T.
, and
Zheng
,
X. Q.
,
2018
, “
A New Asymmetric Twin-Scroll Turbine With Two Waste Gates for Energy Improvements in Diesel Engines
,”
Appl. Energy
,
223
(
1
), pp.
263
272
.
25.
Liu
,
X.
,
Yu
,
C. G.
,
Chen
,
S.
,
Wang
,
Y. P.
, and
Su
,
C. Q.
,
2014
, “
Experiments and Simulations on a Heat Exchanger of an Automotive Exhaust Thermoelectric Generation System Under Coupling Conditions
,”
J. Electron. Mater.
,
43
(
6
), pp.
2218
2223
.
You do not currently have access to this content.