Abstract

Carbon dioxide transport from capture to utilization or storage locations plays key functions in carbon capture and storage systems. In this study, a comprehensive overview and technical guidelines are provided for CO2 pipeline transport systems. Design specifications, construction procedures, cost, safety regulations, environmental and risk aspects are presented and discussed. Furthermore, challenges and future research directions associated with CO2 transport are sorted out including the large capital and operational costs, integrity, flow assurance, and safety issues. A holistic assessment of the impurities’ impacts on corrosion rate and phase change of the transported stream is required to improve pipeline integrity. The influence of impurities and the changes in elevation on the pressure drop along the pipeline need to be further investigated to ensure continuous flow via accurate positioning of pumping stations. Although the long-experience in oil and gas pipeline industry forms powerful reference, it is necessary to develop particular standards and techno-economic frameworks to mitigate the barriers facing CO2 transport systems. Digital twins (DT) have potential to transform CO2 transport sector to achieve high reliability, availability, and maintainability at lower cost. Herein, an integrated five-component robust DT framework is proposed for CO2 pipeline transport systems and the future directions for DT development are insinuated. Data-driven algorithms capable of predicting system's dynamic behavior still need to be developed. The data-driven approach alone is not sufficient and low-order physics-based models should operate in tandem with the updated system parameters to allow interpretation and result's enhancing. Discrepancies between dynamic system models, anomaly detection, and deep learning (ADL) require in-depth localized off-line simulations.

References

1.
Kalina
,
J.
,
Skorek-Osikowska
,
A.
,
Bartela
,
Ł
,
Gładysz
,
P.
, and
Lampert
,
K.
,
2020
, “
Evaluation of Technological Options for Carbon Dioxide Utilization
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
090901
.
2.
Doctor
,
R.
,
Coleman
,
D.
, and
Austell
,
M.
,
2005
, “Transport of CO2,”
Carbon Dioxide Capture and Storage
, IPCC, 2005 –
B.
Metz
,
O.
Davidson
,
H.
de Coninck
,
M.
Loos
, and
L.
Meyer
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
179
194
.
3.
Mohitpour
,
M.
,
Golshan
,
H.
, and
Murray
,
A.
,
2003
,
Pipeline Design & Construction: A Practical Approach
, 2nd ed.,
ASME
.
4.
Boot-Handford
,
M. E.
,
Abanades
,
J. C.
,
Anthony
,
E. J.
,
Blunt
,
M. J.
,
Brandani
,
S.
,
Mac Dowell
,
N.
,
Fernández
,
J. R.
, et al
,
2014
, “
Carbon Capture and Storage Update
,”
Energy Environ. Sci.
,
7
(
1
), pp.
130
189
.
5.
IEA GHG
,
2005
,
IEA GHG; Building the cost curves for CO2 Storage: European Sector, International Energy Agency Greenhouse Gas R&D Programme, https://www.globalccsinstitute.com/archive/hub/publications/95736/building-cost-curves-co2-storage-european-sector.pdf
6.
Sleiti
,
A. K.
,
Al-Ammari
,
W. A.
, and
Aboueata
,
K. M.
,
2022
, “
Flare Gas-to-Power by Direct Intercooled Oxy-Combustion Supercritical CO2 Power Cycles
,”
Fuel
,
308
, p.
121808
.
7.
Sleiti
,
A. K.
, and
Al-ammari
,
W. A.
,
2021
, “
Off-Design Performance Analysis of Combined CSP Power and Direct Oxy-Combustion Supercritical Carbon Dioxide Cycles
,”
Renew. Energy
,
180
, pp.
14
29
.
8.
Sleiti
,
A. K.
,
Al-Ammari
,
W. A.
,
Vesely
,
L.
, and
Kapat
,
J. S.
,
2021
, “
Thermoeconomic and Optimization Analyses of Direct Oxy-Combustion Supercritical Carbon Dioxide Power Cycles With Dry and Wet Cooling
,”
Energy Convers Manag.
,
245
, p.
114607
.
9.
Sleiti
,
A. K.
,
Al-Ammari
,
W.
,
Ahmed
,
S.
, and
Kapat
,
J.
,
2021
, “
Direct-Fired Oxy-Combustion Supercritical-CO2 Power Cycle With Novel Preheating Configurations -Thermodynamic and Exergoeconomic Analyses
,”
Energy
,
226
, p.
120441
.
10.
Sleiti
,
A. K.
, and
Al-Ammari
,
W. A.
, “
Energy and Exergy Analyses of Novel Supercritical CO2 Brayton Cycles Driven by Direct Oxy-Fuel Combustor
,”
Fuel
,
2021
, p.
120557
.
11.
Lu
,
H.
,
Ma
,
X.
,
Huang
,
K.
,
Fu
,
L.
, and
Azimi
,
M.
,
2020
, “
Carbon Dioxide Transport via Pipelines: A Systematic Review
,”
J. Clean. Prod.
,
266
, p.
121994
.
12.
Onyebuchi
,
V. E.
,
Kolios
,
A.
,
Hanak
,
D. P.
,
Biliyok
,
C.
, and
Manovic
,
V.
,
2018
, “
A Systematic Review of Key Challenges of CO2 Transport via Pipelines
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
2563
2583
.
13.
World Resources Institute
,
2010
,
Guidelines for Carbon Dioxide Capture, Transport, and Storage 2010, http://www.wri.org/publication/ccs-guidelines
14.
Wang
,
J.
,
Ryan
,
D.
,
Anthony
,
E. J.
,
Wigston
,
A.
,
Basava-Reddi
,
L.
, and
Wildgust
,
N.
,
2012
, “
The Effect of Impurities in Oxyfuel Flue Gas on CO2 Storage Capacity
,”
Int. J. Greenh. Gas Control
,
11
, pp.
158
162
.
15.
Porter
,
R. T. J.
,
Fairweather
,
M.
,
Pourkashanian
,
M.
, and
Woolley
,
R. M.
,
2015
, “
The Range and Level of Impurities in CO2 Streams From Different Carbon Capture Sources. The Range and Level of Impurities in CO2 Streams From Different Carbon Capture Sources
,”
Int. J. Greenh. Gas Control
,
36
, pp.
161
174
.
16.
Stark
,
R.
, and
Damerau
,
T.
,
2019
, “Digital Twin. Int Acad Prod Eng,”
CIRP Encycl Prod Eng
,
S.
Chatti
, and
T.
Tolio
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
1
8
.
17.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
29
, pp.
36
52
.
18.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Informatics
,
15
(
4
), pp.
2405
2415
.
19.
Fuller
,
A.
,
Fan
,
Z.
,
Day
,
C.
, and
Barlow
,
C.
,
2020
, “
Digital Twin: Enabling Technologies, Challenges and Open Research
,”
IEEE Access
,
8
, pp.
108952
108971
.
20.
Augustine
,
P.
,
2020
, “
The Industry Use Cases for the Digital Twin Idea
,”
Adv. Comput.
,
117
, pp.
79
105
.
21.
Lu
,
Q.
,
Xie
,
X.
,
Parlikad
,
A. K.
, and
Schooling
,
J. M.
,
2020
, “
Digital Twin-Enabled Anomaly Detection for Built Asset Monitoring in Operation and Maintenance
,”
Autom. Constr.
,
118
, p.
103277
.
22.
Tharma
,
R.
,
Winter
,
R.
, and
Eigner
,
M.
,
2018
, “
An Approach for the Implementation of the Digital Twin in the Automotive Wiring Harness Field
,”
Proc. Int. Des. Conf. Des.
,
6
, pp.
3023
3032
.
23.
Gholami Mayani
,
M.
,
Svendsen
,
M.
, and
Oedegaard
,
S. I.
,
2018
, “
Drilling Digital Twin Success Stories the Last 10 Years
,”
Paper Presented at the SPE Norway One Day Seminar
,
Bergen, Norway
,
April
.
24.
Lu
,
Y.
,
Liu
,
C.
,
Wang
,
K. I. K.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Robot Comput. Integr. Manuf.
,
61
, p.
101837
.
25.
Qi
,
Q.
,
Tao
,
F.
,
Hu
,
T.
,
Anwer
,
N.
,
Liu
,
A.
,
Wei
,
Y.
,
Wang
,
L.
, et al
,
2019
, “
Enabling Technologies and Tools for Digital Twin
,”
J. Manuf. Syst.
,
58
, pp.
3
21
.
26.
Uhlemann
,
T. H. J.
,
Schock
,
C.
,
Lehmann
,
C.
,
Freiberger
,
S.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems
,”
Procedia Manuf.
,
9
, pp.
113
120
.
27.
Zhang
,
K.
,
Qu
,
T.
,
Zhou
,
D.
,
Jiang
,
H.
,
Lin
,
Y.
,
Li
,
P.
,
Guo
,
H.
, et al
,
2020
, “
Digital Twin-Based Opti-State Control Method for a Synchronized Production Operation System
,”
Robot Comput. Integr. Manuf.
,
63
, pp.
101892
.
28.
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2019
, “
A Digital Twin for Rapid Qualification of 3D Printed Metallic Components
,”
Appl. Mater. Today
,
14
, pp.
59
65
.
29.
Armendia
,
M.
,
Ghassempouri
,
M.
, and
Erdem Ozturk
,
F. P.
,
2004
,
Twin-Control: A Digital Twin Approach to Improve Machine Tools Lifecycle
, vol.
59
. 10.1097/01.fch.0000336108.22926.39.
30.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
Collect Tech. Pap.—AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf.
, pp.
1
14
. .
31.
Cimino
,
C.
,
Negri
,
E.
, and
Fumagalli
,
L.
,
2019
, “
Review of Digital Twin Applications in Manufacturing
,”
Comput. Ind.
,
113
, p.
103130
.
32.
Madni
,
A.
,
Madni
,
C.
, and
Lucero
,
S.
,
2019
, “
Leveraging Digital Twin Technology in Model-Based Systems Engineering
,”
Systems
,
7
(
1
), p.
7
.
33.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2020
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
, pp.
1
16
.
34.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
.
35.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
36.
Negri
,
E.
,
Fumagalli
,
L.
,
Cimino
,
C.
, and
MacChi
,
M.
,
2019
, “
FMU-Supported Simulation for CPS Digital Twin
,”
Procedia Manuf.
,
28
, pp.
201
206
.
37.
Lu
,
H.
,
Guo
,
L.
,
Azimi
,
M.
, and
Huang
,
K.
,
2019
, “
Oil and Gas 4.0 era: A Systematic Review and Outlook
,”
Comput. Ind.
,
111
, pp.
68
90
.
38.
Koornneef
,
J.
,
Ramírez
,
A.
,
Turkenburg
,
W.
, and
Faaij
,
A.
,
2012
, “
The Environmental Impact and Risk Assessment of CO2 Capture, Transport and Storage—An Evaluation of the Knowledge Base
,”
Prog. Energy Combust. Sci.
,
38
, pp.
62
86
.
39.
European CCS Demonstration Project Network; A Public Report Outlining the Progress, Lessons Learnt and Details of the European CCS Demonstration Project Network, 2012.
40.
Peletiri
,
S. P.
,
Rahmanian
,
N.
, and
Mujtaba
,
I. M.
,
2018
, “
CO2 Pipeline Design: A Review
,”
Energies
,
11
(
9
), p.
2184
.
41.
Wilkes
,
M. D.
,
Mukherjee
,
S.
, and
Brown
,
S.
,
2021
, “
Linking CO2 Capture and Pipeline Transportation: Sensitivity Analysis and Dynamic Study of the Compression Train
,”
Int. J. Greenh. Gas Control
,
111
, p.
103449
.
42.
Brown
,
S.
,
Mahgerefteh
,
H.
,
Martynov
,
S.
,
Sundara
,
V.
, and
Mac
,
D. N.
,
2015
, “
A Multi-Source Flow Model for CCS Pipeline Transportation Networks
,”
Int. J. Greenh. Gas Control
,
43
, pp.
108
114
.
43.
Serpa
,
J.
,
Morbee
,
J.
, and
Tzimas
,
E.
,
2011
,
Technical and Economic Characteristics of a CO2 Transmission Pipeline Infrastructure
. Luxembourg. 10.2790/30861.
44.
Race
,
J.
,
Wetenhall
,
B.
,
Seevam
,
P.
, and
Downie
,
M.
,
2012
, “
Towards a CO2 Pipeline Specification : Defining Tolerance Limits for Impurities
,”
J. Pipeline Eng.
,
11
(
3
), pp.
173
190
.
45.
Godec
,
M. L.
,
2011
,
Global Technology Roadmap for CCS in Industry—Sectoral Assessment—CO2 Enhanced Oil Recovery
,
Advanced Resources International, Inc.
,
Arlington
.
46.
Johnsen
,
K.
,
Helle
,
K.
,
Røneid
,
S.
, and
Holt
,
H.
,
2011
, “
DNV Recommended Practice: Design and Operation of CO2 Pipelines
,”
Energy Procedia
,
4
, pp.
3032
3039
.
47.
Gale
,
J.
, and
Davison
,
J.
,
2004
, “
Transmission of CO2-Safety and Economic Considerations
,”
Energy
,
29
(
9–10
), pp.
1319
1328
.
48.
McCoy
,
S. T.
, and
Rubin
,
E. S.
,
2008
, “
An Engineering-Economic Model of Pipeline Transport of CO2 With Application to Carbon Capture and Storage
,”
Int. J. Greenh. Gas Control
,
2
(
2
), pp.
219
229
.
49.
Rütters
,
H.
,
Stadler
,
S.
,
Bäßler
,
R.
,
Bettge
,
D.
,
Jeschke
,
S.
,
Kather
,
A.
,
Lempp
,
C.
, et al
,
2016
, “
Towards an Optimization of the CO2 Stream Composition—A Whole-Chain Approach
,”
Int. J. Greenh. Gas Control
,
54
, pp.
682
701
.
50.
Salehi
,
M.
,
Sleiti
,
A. K.
, and
Idem
,
S.
,
2017
, “
Study to Identify Computational Fluid Dynamics Models for Use in Determining HVAC Duct Fitting Loss Coefficients
,”
Sci. Technol. Built Environ.
,
23
(
1
), pp.
181
191
.
51.
Salehi
,
M.
,
Idem
,
S.
, and
Sleiti
,
A.
,
2017
, “
Experimental Determination and Computational Fluid Dynamics Predictions of Pressure Loss in Close-Coupled Elbows (RP-1682)
,”
Sci. Technol. Built Environ.
,
23
(
7
), pp.
1132
1141
.
52.
Sleiti
,
A.
,
Salehi
,
M.
, and
Idem
,
S.
,
2017
, “
Detailed Velocity Profiles in Close-Coupled Elbows—Measurements and Computational Fluid Dynamics Predictions (RP-1682)
,”
Sci. Technol. Built Environ.
,
23
(
8
), pp.
1212
1223
.
53.
Sleiti
,
A. K.
,
Zhai
,
J.
, and
Idem
,
S.
,
2013
, “
Computational Fluid Dynamics to Predict Duct Fitting Losses: Challenges and Opportunities
,”
HVAC R. Res.
,
19
, pp.
2
9
.
54.
Tian
,
Q.
,
Zhao
,
D.
,
Li
,
Z.
, and
Zhu
,
Q.
,
2017
, “
Robust and Stepwise Optimization Design for CO2 Pipeline Transportation
,”
Int. J. Greenh. Gas Control
,
58
, pp.
10
18
.
55.
Vandeginste
,
V.
, and
Piessens
,
K.
,
2008
, “
Pipeline Design for a Least-Cost Router Application for CO2 Transport in the CO2 Sequestration Cycle
,”
Int. J. Greenh. Gas Control
,
2
(
4
), pp.
571
581
.
56.
IEA GHG
,
2002
,
Transmission of CO2 and Energy
. PH4/6.
IEA Environmental Projects Ltd.
,
Cheltenham, UK
.
57.
Chandel
,
M. K.
,
Pratson
,
L. F.
, and
Williams
,
E.
,
2010
, “
Potential Economies of Scale in CO2 Transport Through Use of a Trunk Pipeline
,”
Energy Convers. Manag.
,
51
(
12
), pp.
2825
2834
.
58.
Zhang
,
Z. X.
,
Wang
,
G. X.
,
Massarotto
,
P.
, and
Rudolph
,
V.
,
2006
, “
Optimization of Pipeline Transport for CO2 Sequestration
,”
Energy Convers. Manag.
,
47
(
6
), pp.
702
715
.
59.
Sleiti
,
A.
, and
Kapat
,
J. S.
,
2006
, “
Effect of Coriolis and Centrifugal Forces at High Rotation and Density Ratios
,”
J. Thermophys. Heat Transf.
,
20
(
1
), pp.
67
79
.
60.
Lazic
,
T.
,
Oko
,
E.
, and
Wang
,
M.
,
2014
, “
Case Study on CO2 Transport Pipeline Network Design for Humber Region in the UK
,”
Proc. Inst. Mech. Eng., Part E
,
228
(
3
), pp.
210
225
.
61.
Witkowski
,
A.
,
Majkut
,
M.
, and
Rulik
,
S.
,
2014
, “
Analysis of Pipeline Transportation Systems for Carbon Dioxide Sequestration
,”
Arch. Thermodyn.
,
35
(
1
), pp.
117
140
.
62.
Knoope
,
M. M. J.
,
Guijt
,
W.
,
Ramírez
,
A.
, and
Faaij
,
A. P. C.
,
2014
, “
Improved Cost Models for Optimizing CO2 Pipeline Configuration for Point-to-Point Pipelines and Simple Networks
,”
Int. J. Greenh. Gas Control.
,
22
, pp.
25
46
.
63.
Kang
,
K.
,
Seo
,
Y.
,
Chang
,
D.
,
Kang
,
S. G.
, and
Huh
,
C.
,
2015
, “
Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model
,”
Energies
,
8
(
3
), pp.
2176
2196
.
64.
Brown
,
A.
,
Eickhoff
,
C.
,
Reinders
,
J. E. A.
,
Raben
,
I.
,
Spruijt
,
M.
, and
Neele
,
F.
,
2017
, “
IMPACTS: Framework for Risk Assessment of CO2 Transport and Storage Infrastructure
,”
Energy Procedia
,
114
, pp.
6501
6513
.
65.
Teng
,
L.
,
Li
,
Y.
,
Han
,
H.
,
Zhao
,
P.
, and
Zhang
,
D.
,
2018
, “
Flow and Deposition Characteristics Following Chokes for Pressurized CO2 Pipelines
,”
ASME J. Energy Resour. Technol. Trans.
,
140
(
7
), p.
073001
.
66.
Bilio
,
M.
,
Brown
,
S.
,
Fairweather
,
M.
, and
Mahgerefteh
,
H.
,
2009
, “
CO2 Pipelines Material
and Safety Considerations
,”
21st Inst. Chem. Eng. Symp. Hazards 2009—Hazards XXI Process Saf. Environ. Prot. Manchester; UK: Institution of Chemical Engineers Symposium Series
, pp.
423
429
.
67.
Cosham
,
A.
, and
Eiber
,
R. J.
,
2009
, “
Fracture Control
in
Carbon Dioxide Pipelines—The Effect of Impurities
,”
Proc. Bienn. Int. Pipeline Conf. IPC
. 10.1115/IPC2008-64346.
68.
Nordhaus
,
R.
, and
Pitlick
,
E.
,
2009
, “
Carbon Dioxide Pipeline Regulation
,”
Energy Law J.
,
30
, p.
85
.
69.
Knoope
,
M. M. J.
,
Ramírez
,
A.
, and
Faaij
,
A. P. C.
,
2013
, “
A State-of-the-Art Review of Techno-Economic Models Predicting the Costs of CO2 Pipeline Transport
,”
Int. J. Greenh. Gas Control
,
16
, pp.
241
270
.
70.
Ghazi
,
N.
, and
Race
,
J. M.
,
2013
, “
Techno-Economic Modelling and Analysis of CO2 Pipelines
,”
J. Pipeline Eng.
,
IPC2012-90
, pp.
189
198
.
71.
ZEP (Zero Emissions Platform)
,
The Costs of CO2 Transport: Post-Demonstration CCS in the EU
.
Brussels
:
European Technology Platform for Zero Emission Fossil Fuel Power Plants
,
2011
.
72.
USDOE, FE/NETL CO2 Saline Storage Cost Model: Model Description and Baseline Results, Report No. DOE/NETL-2014/1659. Pittsburgh, PA: US Department of Energy, National Energy Technology Laboratory,
2014
.
73.
Rubin
,
E. S.
,
Davison
,
J. E.
, and
Herzog
,
H. J.
,
2015
, “
The Cost of CO2 Capture and Storage
,”
Int. J. Greenh. Gas Control
,
40
, pp.
378
400
.
74.
Noothout
,
P.
,
Wiersma
,
F.
,
Hurtado
,
O.
,
Macdonald
,
D.
,
Kemper
,
J.
, and
Van Alphen
,
K.
,
2014
, “
CO2 Pipeline Infrastructure—Lessons Learnt
,”
Energy Procedia
,
63
, pp.
2481
2492
.
75.
Gough
,
C.
,
O’Keefe
,
L.
, and
Mander
,
S.
,
2014
, “
Public Perceptions of CO2 Transportation in Pipelines
,”
Energy Policy
,
70
, pp.
106
114
.
76.
Witkowski
,
A.
,
Rusin
,
A.
,
Majkut
,
M.
,
Rulik
,
S.
, and
Stolecka
,
K.
,
2013
, “
Comprehensive Analysis of Pipeline Transportation Systems for CO2 Sequestration. Thermodynamics and Safety Problems
,”
Energy Convers. Manag.
,
76
, pp.
665
673
.
77.
Halim
,
S. Z.
,
Yu
,
M.
,
Escobar
,
H.
, and
Quddus
,
N.
,
2020
, “
Towards a Causal Model From Pipeline Incident Data Analysis
,”
Process Saf. Environ. Prot.
,
143
, pp.
348
360
.
78.
Hawkins
,
J.
,
Duguid
,
A.
, and
Keister
,
L.
,
2021
, “
CO2 Pipeline Risk Assessment for a Regional-Scale Pipeline in the Midcontinental United States
,”
Proceedings of the 15th Greenhouse Gas Control Technologies Conference
,
Abu Dhabi, UAE
,
Mar. 15–18
.
79.
Loboda
,
I.
,
2016
, “Neural Networks for Gas Turbine Diagnosis,”
Artificial Neural Networks - Models and Applications
,
IntechOpen
,
London, UK
, pp.
196
218
.
80.
Zhao
,
N.
,
Wen
,
X.
, and
Li
,
S.
,
2016
, “
A Review on Gas Turbine Anomaly Detection for Implementing Health Management
,”
Proc. ASME Turbo Expo
.
81.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power.
,
136
(
5
), p.
051201
.
82.
Volponi
,
A. J.
, and
Tang
,
L.
,
2016
, “
Improved Engine Health Monitoring Using Full Flight Data and Companion Engine Information
,”
SAE Int. J. Aerosp.
,
9
(
1
),
91
102
.
83.
US National Energy Technology Laboratory’s (NETL’s) Institute for the Design of Advanced Energy Systems (IDAES)
, Next Generation Computational Framework 2021, https://idaes.org/research/next-generation-computational-framework/
84.
GE Digital
,
Digital Twin, Apply Advanced Analytics and Machine Learning to Reduce Operational Costs and Risks 2021
, https://www.ge.com/digital/applications/digital-twin, Accessed January 11, 2021.
85.
Sleiti
,
A. K.
,
Al-Ammaria
,
W. A.
,
Al-Khawaja
,
M.
, and
Karbon
,
M.
,
2020
, “
A Combined Thermo-Mechanical Refrigeration System With Isobaric Expander-Compressor Unit Powered by low Grade Heat—Design and Analysis
,”
Int. J. Refrig.
,
120
, pp.
39
49
.
86.
Sleiti
,
A. K.
,
Al-ammari
,
W. A.
, and
Al-khawaja
,
M.
,
2020
, “
A Novel Solar Integrated Distillation and Cooling System—Design and Analysis
,”
Sol. Energy
,
206
, pp.
68
83
.
87.
Sleiti
,
A. K.
,
Takalkar
,
G.
,
El-Naas
,
M. H.
,
Hasan
,
A. R.
, and
Rahman
,
M. A.
,
2020
, “
Early Gas Kick Detection in Vertical Wells via Transient Multiphase Flow Modelling: A Review
,”
J. Nat. Gas Sci. Eng.
,
80
, p.
103391
.
88.
Wagner
,
W.
, and
Pruss
,
A.
,
2002
, “
Revised Release on the {IAPWS} Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
, pp.
387
535
.
89.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.
90.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H. J.
,
Kruse
,
A.
,
Mareš
,
R.
, et al
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
184
.
91.
Akasaka
,
R.
,
2008
, “
A Reliable and Useful Method to Determine the Saturation State From Helmholtz Energy Equations of State
,”
J. Therm. Sci. Technol.
,
3
(
3
), pp.
442
451
.
92.
Huber
,
M. L.
,
Perkins
,
R. A.
,
Friend
,
D. G.
,
Sengers
,
J. V.
,
Assael
,
M. J.
,
Metaxa
,
I. N.
,
Miyagawa
,
K.
, et al
,
2012
, “
New International Formulation for the Thermal Conductivity of H2O
,”
J. Phys. Chem. Ref. Data
,
41
(
3
), pp.
033102
.
93.
Daucik
,
K.
, and
Dooley
,
R. B.
,
2011
, Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Iapws.
94.
Huber
,
M. L.
,
Perkins
,
R. A.
,
Laesecke
,
A.
,
Friend
,
D. G.
,
Sengers
,
J. V.
,
Assael
,
M. J.
,
Metaxa
,
I. N.
, et al
,
2009
, “
New International Formulation for the Viscosity of H2O
,”
J. Phys. Chem. Ref. Data
,
38
(
2
), pp.
101
125
.
95.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
96.
Vesovic
,
V.
,
Wakeham
,
W. A.
,
Olchowy
,
G. A.
,
Sengers
,
J. V.
,
Watson
,
J. T. R.
, and
Millat
,
J.
,
1990
, “
The Transport Properties of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
763
808
.
97.
Fenghour
,
A.
,
Wakeham
,
W. A.
, and
Vesovic
,
V.
,
1998
, “
The Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
27
(
1
), pp.
31
44
.
98.
Granger
,
C. W. J.
,
1969
, “
Investigating Causal Relations by Econometric Models and Cross-Spectral Methods
,”
Econometrica
,
37
(
3
), p.
424
.
99.
Goyal
,
V.
,
Xu
,
M.
, and
Kapat
,
J.
,
2019
, “
Use of Vector Autoregressive Model for Anomaly Detection in Utility Gas Turbines
,”
Proc. ASME Turbo Expo
.
100.
Lütkepohl
,
H.
,
2005
, New Introduction to Multiple Time Series Analysis. 10.1007/978-3-540-27752-1.
101.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2020
, “
GT2020-15232 Prediction of Gas Turbine Performance Using Machine Learning Methods
,”
Proc. ASME Turbo Expo 2020 Turbomach. Tech. Conf. Expo. GT2020
.
102.
Global CCS Institute
, Carbon Capture and Storage Images. Transp. Overv. 2020.
103.
Giro
,
R. A.
,
Bernasconi
,
G.
,
Giunta
,
G.
, and
Cesari
,
S.
,
2021
, “
A Data-Driven Pipeline Pressure Procedure for Remote Monitoring of Centrifugal Pumps
,”
J. Pet. Sci. Eng.
,
205
, p.
108845
.
You do not currently have access to this content.