Abstract

Due to the high transiency and high voltage characteristics of spark ignition (SI), precise measurements are in demand for efficient ignition in future clean combustion engines. The practical challenges of SI systems arise as the gaseous substances vary extensively in density, flow, and temperature. In this paper, a typical transistor coil ignition system with a current management module maintains the transient discharge condition for more credible measurements. Suitable apparatus with field-programmable gate array (FPGA) multi-task control systems are established to effectively control and stabilize the discharge current level and duration. The electrical waveforms and spark plasma patterns are correlated, via concurrent electric probing and shadowgraph imaging, under quiescent and flow conditions. The multi-task FPGA provides synchronization of ignition control and data acquisition. The empirical setup and analyzing methods of this work provide essential guidance for facilitating broader innovations in spark ignition, and for advancing the clean and efficient combustion in automotive and aviation engines.

References

1.
Williams
,
F. A.
,
2018
,
Combustion Theory
,
CRC Press
,
Boca Raton, FL
.
2.
Galloni
,
E.
,
Fontana
,
G.
, and
Palmaccio
,
R.
,
2013
, “
Effects of Exhaust gas Recycle in a Downsized Gasoline Engine
,”
Appl. Energy
,
105
, pp.
99
107
.
3.
Walker
,
R.
,
Wissink
,
N.
,
DelVescovo
,
M. L.
,
and Reitz
,
D. A.
, and
D
,
R.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
.
4.
Yu
,
S.
, and
Zheng
,
M.
,
2021
, “
Future Gasoline Engine Ignition: A Review on Advanced Concepts
,”
Int. J. Engine Res.
,
22
(
6
), pp.
1743
1775
.
5.
De Cesare
,
M.
,
Cavina
,
N.
, and
Paiano
,
L.
,
2017
, “
Technology Comparison for Spark Ignition Engines of New Generation
,”
SAE Int. J. Engines
,
10
(
5
), pp.
2513
2534
.
6.
Payri
,
F.
,
Luján
,
J. M.
,
Martín
,
J.
, and
Abbad
,
A.
,
2010
, “
Digital Signal Processing of in-Cylinder Pressure for Combustion Diagnosis of Internal Combustion Engines
,”
Mech. Syst. Signal Process.
,
24
(
6
), pp.
1767
1784
.
7.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2013
, “
Investigations on the Effect of Measurement Errors on Estimated Combustion and Performance Parameters in HCCI Combustion Engine
,”
Meas. J. Int. Meas. Confed.
,
46
(
1
), pp.
80
88
.
8.
Lee
,
M. J.
,
Hall
,
M.
,
Ezekoye
,
O. A.
, and
Matthews
,
R.
,
2005
, “Voltage, and Energy Deposition Characteristics of Spark Ignition Systems,” SAE Technical Paper.
9.
SAE J973 Standard
. “Ignition System Measurements Procedure,” SAE, 2020 Nov. 1.
10.
Schneider
,
A.
,
Hettinger
,
A.
,
Kufferath
,
A.
, and
Rottengruber
,
H.
,
2014
, “
Requirements of Inductive Ignition Systems Under Engine and Steady-State Conditions
,”
Second International Conference on Ignition Systems for Gasoline Engines
,
Berlin Germany
.
11.
Yu
,
X.
,
Yu
,
S.
,
Yang
,
Z.
,
Tan
,
Q.
,
Ives
,
M.
,
Li
,
L.
,
Liu
,
M.
, and
Zheng
,
M.
,
2017
, “Improvement on Energy Efficiency of the Spark Ignition System,” SAE Technical Paper.
12.
Yu
,
X.
,
Zhu
,
H.
,
Zheng
,
M.
, and
Li
,
L.
,
2019
, “
Electrical Waveform Measurement of Spark Energy and its Effect on Lean Burn SI Engine Combustion
,” SAE Technical Paper Series, pp.
292
300
.
13.
Pashley
,
N.
,
Stone
,
R.
, and
Roberts
,
G.
,
2000
, “Ignition System Measurement Techniques and Correlations for Breakdown and Arc Voltages and Currents,” SAE Technical Paper.
14.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
, 2nd ed,
McGraw-Hill Education
,
New York
.
15.
Sadiq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
.
16.
Sebok
,
M.
,
Kubis
,
M.
,
Gutten
,
M.
,
Kucera
,
M.
,
Koltunowicz
,
T. N.
, and
Bondariev
,
V.
,
2020
, “
Diagnostics of Automotive Ignition System in Operating Conditions
,”
13th International Conference on ELEKTRO 2020, ELEKTRO 2020-Proc.
,
Taormina, Italy
, pp.
1
4
.
17.
Yang
,
Z.
,
Zhu
,
H.
,
Yu
,
X.
,
Zheng
,
M.
, and
Ting
,
D. S. K.
,
2020
, “
Spark Plasma in Different Gas Media Under Flow Conditions
,”
IEEE Trans. Plasma Sci.
,
48
(
1
), pp.
104
108
.
18.
Kim
,
K.
, and
Askari
,
O.
,
2019
, “
Understanding the Effect of Capacitive Discharge Ignition on Plasma Formation and Flame Propagation of Air–Propane Mixture
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082201
.
19.
Desmira
,
N.
,
Nagasaka
,
T.
,
Narukawa
,
K.
,
Ishikawa
,
A.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2013
, “
Spectroscopic Observation of Chemical Species From High-Temperature Air Pulverized Coal Combustion
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034503
.
20.
Kim
,
W.
,
Bae
,
C.
,
Michler
,
T.
,
Toedter
,
O.
, and
Koch
,
T.
,
2018
, “
Spatio-Temporally Resolved Emission Spectroscopy of Inductive Spark Ignition in Atmospheric air Condition
,”
Ignition Systems for Gasoline Engines: 4th International Conference
,
Berlin Germany
, pp.
209
221
.
21.
Huang
,
S.
,
Li
,
T.
,
Zhang
,
Z.
, and
Ma
,
P.
,
2019
, “
Rotational and Vibrational Temperatures in the Spark Plasma by Various Discharge Energies and Strategies
,”
Appl. Energy
,
251
, p.
113358
.
22.
SAE J139 Standard
. “Ignition System Nomenclature and Terminology,” SAE, 2020 Feb. 1.
23.
Maly
,
R.
, and
Vogel
,
M.
,
1979
, “
Initiation and Propagation of Flame Fronts in Lean CH4-Air Mixtures by the Three Modes of the Ignition Spark
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
821
831
.
24.
Wang
,
L.
,
Yu
,
X.
, and
Zheng
,
M.
,
2020
, “
Ignition Energy Discharge of Oscillating Plasma Waveforms Under Atmospheric Conditions
,”
IEEE Trans. Plasma Sci.
,
49
(
1
), pp.
326
334
.
25.
Morris
,
N. M.
,
1991
, “Measuring Instruments and Electrical Measurements,”
Mastering Electrical Engineering
,
Springer
,
New York
, pp.
63
85
.
26.
Smith
,
J. O.
,
2007
, Mathematics of the discrete Fourier transform (DFT): with Audio Applications. Julius Smith.
27.
Yu
,
X.
,
Yang
,
Z.
,
Yu
,
S.
,
Ting
,
D.
,
Zheng
,
M.
, and
Li
,
L.
,
2018
, “Boosted current spark strategy for lean burn spark ignition engines,” SAE Technical Paper.
28.
Brook
,
R. J.
,
2012
,
Concise Encyclopedia of Advanced Ceramic Materials
,
Elsevier
,
New York
.
29.
Pyszczek
,
R.
,
Hahn
,
J.
,
Priesching
,
P.
, and
Teodorczyk
,
A.
,
2020
, “
Numerical Modeling of Spark Ignition in Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022202
.
30.
Yu
,
X.
,
Yang
,
Z.
,
Yu
,
S.
,
Ives
,
M.
, and
Zheng
,
M.
,
2017
, “
Discharge Characteristics of Current Boosted Spark Events Under Flow Conditions
,”
Internal Combustion Engine Division Fall Technical Conference
,
Seattle, WA, ASME
, p.
V001T03A017
.
31.
Kim
,
J.
, and
Anderson
,
R. W.
,
1995
, “
Spark Anemometry of Bulk Gas Velocity at the Plug Gap of a Firing Engine
,” SAE Technical Paper, pp.
2256
2266
.
You do not currently have access to this content.