Abstract

The performance of an adsorption heat pump is a function of the equilibrium uptake and diffusion resistances of a particular system, which determines the refrigerant throughput during a cycle. Previous studies have sought improved sorption bed performance by increasing heat transfer; however, some of the proposed heat exchanger enhancements represent costly alterations to the system. This work instead investigates a method for optimizing sorption bed mass transfer, which can be implemented as a low-cost alternative to heat transfer enhancement or in addition to it. The objective is to balance the intra-particle diffusion resistance, which increases with adsorbent particle diameter, with the inter-particle pressure drop, which decreases with adsorbent particle diameter. A silica gel–water system model is used to show that the optimal particle geometry in a packed bed yields a 48% improvement in cooling duty and over 50% increase in coefficient of performance compared with larger particles (dp = 1.42 mm).

References

1.
Hulse
,
G.
,
1929
, “
Freight Car Refrigeration by an Adsorption System Employing Silica Gel
,”
Refrig. Eng.
,
17
(
2
), pp.
41
54
.
2.
Amar
,
N. B.
,
Sun
,
L. M.
, and
Meunier
,
F.
,
1996
, “
Numerical Analysis of Adsorptive Temperature Wave Regenerative Heat Pump
,”
Appl. Therm. Eng.
,
16
(
5
), pp.
405
418
.
3.
de Nevers
,
N.
,
2005
,
Fluid Mechanics for Chemical Engineers
, 3rd ed.,
McGraw-Hill
,
New York
.
4.
Sun
,
L. M.
,
Feng
,
Y.
, and
Pons
,
M.
,
1997
, “
Numerical Investigation of Adsorptive Heat Pump Systems With Thermal Wave Heat Regeneration Under Uniform-Pressure Conditions
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
281
293
.
5.
Marletta
,
L.
,
Maggio
,
G.
,
Freni
,
A.
,
Ingrasciotta
,
M.
, and
Restuccia
,
G.
,
2002
, “
A Non-uniform Temperature Non-uniform Pressure Dynamic Model of Heat and Mass Transfer in Compact Adsorbent Beds
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3321
3330
.
6.
Maggio
,
G.
,
Freni
,
A.
, and
Restuccia
,
G.
,
2006
, “
A Dynamic Model of Heat and Mass Transfer in a Double-Bed Adsorption Machine With Internal Heat Recovery
,”
Int. J. Refrig.
,
29
(
4
), pp.
589
600
.
7.
Restuccia
,
G.
,
Freni
,
A.
, and
Maggio
,
G.
,
2002
, “
A Zeolite-Coated Bed for Air Conditioning Adsorption Systems: Parametric Study of Heat and Mass Transfer by Dynamic Simulation
,”
Appl. Therm. Eng.
,
22
(
6
), pp.
619
630
.
8.
Chua
,
H. T.
,
Ng
,
K. C.
,
Wang
,
W.
,
Yap
,
C.
, and
Wang
,
X. L.
,
2004
, “
Transient Modeling of a Two-Bed Silica Gel-Water Adsorption Chiller
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
659
669
.
9.
Liu
,
Y.
, and
Leong
,
K. C.
,
2008
, “
Numerical Modeling of a Zeolite/Water Adsorption Cooling System With Non-constant Condensing Pressure
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
618
622
.
10.
Zhang
,
L. Z.
,
2000
, “
A Three-Dimensional Non-equilibrium Model for an Intermittent Adsorption Cooling System
,”
Sol. Energy
,
69
(
1
), pp.
27
35
.
11.
Tather
,
M.
,
Tantekin-Ersolmaz
,
B.
, and
Erdem-Senatalar
,
A.
,
1999
, “
A Novel Approach to Enhance Heat and Mass Transfer in Adsorption Heat Pumps Using the Zeolite-Water Pair
,”
Microporous Mesoporous Mater.
,
27
(
1
), pp.
1
10
.
12.
Tather
,
M.
, and
Erdem-Senatalar
,
A.
,
2002
, “
When Do Thin Zeolite Layers and a Large Void Volume in the Adsorber Limit the Performance of Adsorption Heat Pumps?
,”
Microporous Mesoporous Mater.
,
54
(
1–2
), pp.
89
96
.
13.
Szarzynski
,
S.
,
Feng
,
Y.
, and
Pons
,
M.
,
1997
, “
Study of Different Internal Vapour Transports for Adsorption Cycles With Heat Regeneration
,”
Int. J. Refrig.
,
20
(
6
), pp.
390
401
.
14.
Gui
,
Y. B.
, and
Wang
,
R. Z.
,
2001
, “
Practical Three-Heat-Reservoir Model on Heat-Regenerative Adsorption Air-Conditioning System
,”
Appl. Therm. Eng.
,
21
(
16
), pp.
1643
1656
.
15.
Yong
,
L.
, and
Sumathy
,
K.
,
2002
, “
Review of Mathematical Investigation on the Closed Adsorption Heat Pump and Cooling Systems
,”
Renewable Sustainable Energy Rev.
,
6
(
4
), pp.
305
338
.
16.
Pesaran
,
A.
,
Lee
,
H.
,
Hwang
,
Y.
,
Radermacher
,
R.
, and
Chun
,
H.-H.
,
2016
, “
Review Article: Numerical Simulation of Adsorption Heat Pumps
,”
Energy
,
100
(
2
), pp.
310
320
.
17.
Chakraborty
,
A.
,
Saha
,
B. B.
,
Ng
,
K. C.
,
Koyama
,
S.
, and
Srinivasan
,
K.
,
2009
, “
Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces
,”
Langmuir
,
25
(
4
), pp.
2204
2211
.
18.
Raymond
,
A.
,
2010
, “
Investigation of Microparticle to System Level Phenomena in Thermally Activated Adsorption Heat Pumps
,”
Master’s thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
19.
Harvey
,
A. H.
, and
Lemmon
,
E. W.
,
2004
, “
Correlation for the Second Virial Coefficient of Water
,”
J. Phys. Chem. Ref. Data
,
33
(
1
), pp.
369
376
.
20.
Raymond
,
A.
, and
Garimella
,
S.
,
2021
, “
A Theoretical Treatment of the Design and Optimization of Adsorption Heat Pumps
,”
Appl. Therm. Eng.
,
184
(
2
), p.
116305
.
21.
Clausse
,
M.
,
Meunier
,
F.
,
Coulie
,
J.
, and
Herail
,
E.
,
2008
, “
Comparison of Adsorption Systems for Polygeneration Systems Based on Fuel Cells
,”
International Sorption Heat Pump Conference
,
Seoul, South Korea
,
Sept. 23–26
, pp.
114
119
.
22.
Radu
,
A. I.
,
Defraeye
,
T.
,
Ruch
,
P.
,
Carmeliet
,
J.
, and
Derome
,
D.
,
2017
, “
Insights From Modeling Dynamics of Water Sorption in Spherical Particles for Adsorption Heat Pumps
,”
Int. J. Heat Mass Transfer
,
105
(
3
), pp.
326
337
.
23.
Dias
,
J. M. S.
, and
Costa
,
V. A. F.
,
2019
, “
Which Dimensional Model for the Analysis of a Coated Tube Adsorber for Adsorption Heat Pumps?
Energy
,
174
(
2
), pp.
1110
1120
.
24.
Mueller
,
G. E.
,
1992
, “
Radial Void Fraction Distributions in Randomly Packed Fixed Beds of Uniformly Sized Spheres in Cylindrical Containers
,”
Powder Technol.
,
72
(
3
), pp.
269
275
.
25.
Mueller
,
G. E.
,
1999
, “
Radial Void Fraction Correlation for Annular Packed Beds
,”
AIChE J.
,
45
(
11
), pp.
2458
2460
.
26.
Mueller
,
G. E.
,
2002
, “
Narrow Annular Packed-Bed Radial Void Fraction Correlation
,”
AIChE J.
,
48
(
3
), pp.
644
647
.
27.
Tien
,
C.
,
1994
,
Adsorption Calculations and Modeling
,
Butterworth-Heinemann
,
Boston
.
28.
Rupam
,
T. H.
,
Islam
,
M. A.
,
Pal
,
A.
,
Chakraborty
,
A.
, and
Saha
,
B. B.
,
2019
, “
Thermodynamic Property Surfaces for Various Adsorbent/Adsorbate Pairs for Cooling Applications
,”
Int. J. Heat Mass Transfer
,
144
(
6
), p.
118579
.
29.
Chua
,
H. T.
,
Ng
,
K. C.
,
Chakraborty
,
A.
,
Oo
,
N. M.
, and
Othman
,
M. A.
,
2002
, “
Adsorption Characteristics of Silica Gel + Water Systems
,”
J. Chem. Eng. Data
,
47
(
5
), pp.
1177
1181
.
30.
Hamamoto
,
Y.
,
Alam
,
K. C. A.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2005
, “
Performance Evaluation of a Two-Stage Adsorption Refrigeration Cycle With Different Mass Ratio
,”
Int. J. Refrig.
,
28
(
3
), pp.
344
352
.
31.
Saha
,
B. B.
,
El-Sharkawy
,
I. I.
,
Chakraborty
,
A.
, and
Koyama
,
S.
,
2007
, “
Study on an Activated Carbon Fiber-Ethanol Adsorption Chiller: Part I—System Description and Modeling
,”
Int. J. Refrig.
,
30
(
1
), pp.
86
95
.
32.
Di
,
J.
,
Wu
,
J. Y.
,
Xia
,
Z. Z.
, and
Wang
,
R. Z.
,
2007
, “
Theoretical and Experimental Study on Characteristics of a Novel Silica Gel-Water Chiller Under the Conditions of Variable Heat Source Temperature
,”
Int. J. Refrig.
,
30
(
3
), pp.
515
526
.
You do not currently have access to this content.