Abstract
The demand for improving living standards has led to increasing freshwater consumption and comfort cooling, requiring significant performance improvements. In this regard, a novel and efficient cascade refrigeration system (CRS) for simultaneous generation of considerable freshwater and cooling effect is proposed. The system does not require dedicated components for desalinating seawater because it is a by-product of the proposed CRS. Utilizing the cascade configuration enhances energy efficiency by lowering the compression work while improving energy recovery by utilizing the heat rejected from the condenser of low-temperature cycle to vaporize seawater for desalination in the evaporator of the high-temperature cycle of the proposed cascade system. A mathematical model of the innovative system based on thermodynamic and economic principles has been developed and utilized to predict the proposed system's thermal performance and cost-savings. A comprehensive analysis has been conducted to study the effect of multiple parameters such as the evaporator, condenser, and brine boiling temperatures. The main studied parameters were coefficient of performance (COP), gain output ratio (GOR), freshwater production, and total cost-savings. For a 10 tons of refrigeration (TR) unit, the freshwater production was between 56.11 and 73.36 kg/h, with cost-savings reaching 2226 US$/year. It was found that the freshwater production increased with condenser and brine boiling temperature but decreased with evaporator temperature. The COP improvement can be as much as 26% over the reference cooling system without desalination.