Abstract

The demand for improving living standards has led to increasing freshwater consumption and comfort cooling, requiring significant performance improvements. In this regard, a novel and efficient cascade refrigeration system (CRS) for simultaneous generation of considerable freshwater and cooling effect is proposed. The system does not require dedicated components for desalinating seawater because it is a by-product of the proposed CRS. Utilizing the cascade configuration enhances energy efficiency by lowering the compression work while improving energy recovery by utilizing the heat rejected from the condenser of low-temperature cycle to vaporize seawater for desalination in the evaporator of the high-temperature cycle of the proposed cascade system. A mathematical model of the innovative system based on thermodynamic and economic principles has been developed and utilized to predict the proposed system's thermal performance and cost-savings. A comprehensive analysis has been conducted to study the effect of multiple parameters such as the evaporator, condenser, and brine boiling temperatures. The main studied parameters were coefficient of performance (COP), gain output ratio (GOR), freshwater production, and total cost-savings. For a 10 tons of refrigeration (TR) unit, the freshwater production was between 56.11 and 73.36 kg/h, with cost-savings reaching 2226 US$/year. It was found that the freshwater production increased with condenser and brine boiling temperature but decreased with evaporator temperature. The COP improvement can be as much as 26% over the reference cooling system without desalination.

References

1.
Ercin
,
A. E.
, and
Hoekstra
,
A. Y.
,
2014
, “
Water Footprint Scenarios for 2050: A Global Analysis
,”
Environ. Int.
,
64
, pp.
71
82
.
2.
de Amorim
,
W. S.
,
Valduga
,
I. B.
,
Ribeiro
,
J. M. P.
,
Williamson
,
V. G.
,
Krauser
,
G. E.
,
Magtoto
,
M. K.
, and
de Andrade Guerra
,
J. B. S. O.
,
2018
, “
The Nexus Between Water, Energy, and Food in the Context of the Global Risks: An Analysis of the Interactions Between Food, Water, and Energy Security
,”
Environ. Impact Assess. Rev.
,
72
, pp.
1
11
.
3.
Mekonnen
,
M. M.
, and
Hoekstra
,
A. Y.
,
2016
, “
Four Billion People Facing Severe Water Scarcity
,”
Sci. Adv. Sci.
,
2
(
2
), pp.
1
6
.
4.
Chafidz
,
A.
,
Al-Zahrani
,
S.
,
Al-Otaibi
,
M. N.
,
Hoong
,
C. F.
,
Lai
,
T. F.
, and
Prabu
,
M.
,
2014
, “
Portable and Integrated Solar-Driven Desalination System Using Membrane Distillation for Arid Remote Areas in Saudi Arabia
,”
Desalination
,
345
, pp.
36
49
.
5.
Demirbas
,
A.
,
Hashem
,
A. A.
, and
Bakhsh
,
A. A.
,
2017
, “
The Cost Analysis of Electric Power Generation in Saudi Arabia
,”
Energy Sources Part B Econ. Plan. Policy
,
12
(
6
), pp.
591
596
.
6.
Electricity and Cogeneration Regulatory Authority (ECRA)
,
2014
, “
Annual Statistical Booklet for Electricity and Seawater Desalination Industries
,” Riyadh.
7.
Nada
,
S. A.
,
Elattar
,
H. F.
, and
Fouda
,
A.
,
2015
, “
Performance Analysis of Proposed Hybrid Air Conditioning and Humidification-Dehumidification Systems for Energy Saving and Water Production in Hot and Dry Climatic Regions
,”
Energy Convers. Manage.
,
96
, pp.
208
227
.
8.
Nada
,
S. A.
,
Elattar
,
H. F.
, and
Fouda
,
A.
,
2015
, “
Experimental Study for Hybrid Humidification-Dehumidification Water Desalination and Air Conditioning System
,”
Desalination
,
363
, pp.
112
125
.
9.
Elattar
,
H. F.
,
Fouda
,
A.
, and
Nada
,
S. A.
,
2016
, “
Performance Investigation of a Novel Solar Hybrid Air Conditioning and Humidification-Dehumidification Water Desalination System
,”
Desalination
,
382
, pp.
28
42
.
10.
Fouda
,
A.
,
Nada
,
S. A.
, and
Elattar
,
H. F.
,
2016
, “
An Integrated A/C and HDH Water Desalination System Assisted by Solar Energy: Transient Analysis and Economical Study
,”
Appl. Therm. Eng.
,
108
, pp.
1320
1335
.
11.
Chiranjeevi
,
C.
, and
Srinivas
,
T.
,
2014
, “
Combined Two Stage Desalination and Cooling Plant
,”
Desalination
,
345
, pp.
56
63
.
12.
Chiranjeevi
,
C.
, and
Srinivas
,
T.
,
2015
, “
Experimental and Simulation Studies on Two Stage Humidification-Dehumidification Desalination and Cooling Plant
,”
Desalination
,
376
, pp.
9
16
.
13.
Chiranjeevi
,
C.
, and
Srinivas
,
T.
,
2017
, “
Augmented Desalination With Cooling Integration
,”
Int. J. Refrig.
,
80
, pp.
106
119
.
14.
Gude
,
V. G.
, and
Nirmalakhandan
,
N.
,
2008
, “
Combined Desalination and Solar-Assisted Air-Conditioning System
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3326
3330
.
15.
Yassen
,
A.
,
Antar
,
M. A.
,
Khalifa
,
A. E.
, and
El-Shaarawi
,
M.
,
2019
, “
Analysis of Absorption Cooling and MD Desalination Cogeneration System
,”
Arabian J. Sci. Eng.
,
44
(
2
), pp.
1081
1095
.
16.
Hou
,
S.
,
Li
,
H.
, and
Zhang
,
H.
,
2008
, “
An Open Air-Vapor Compression Refrigeration System for Air-Conditioning and Desalination on Ship
,”
Desalination
,
222
(
1–3
), pp.
646
655
.
17.
Hawlader
,
M. N. A.
,
Dey
,
P. K.
,
Diab
,
S.
, and
Chung
,
C. Y.
,
2004
, “
Solar Assisted Heat Pump Desalination System
,”
Desalination
,
168
, pp.
49
54
.
18.
Amin
,
Z. M.
, and
Hawlader
,
M. N. A.
,
2015
, “
Analysis of Solar Desalination System Using Heat Pump
,”
Renewable Energy
,
74
, pp.
116
123
.
19.
Ahmed
,
M. A.
,
Qasem
,
N. A. A.
,
Zubair
,
S. M.
,
Gandhidasan
,
P.
, and
Bahaidarah
,
H. M.
,
2018
, “
Thermodynamic Balancing of the Regeneration Process in a Novel Liquid Desiccant Cooling/Desalination System
,”
Energy Convers. Manage.
,
176
, pp.
86
98
.
20.
Kabeel
,
A. E.
, and
Abdelgaied
,
M.
,
2019
, “
A New Configuration of the Desiccant Dehumidifier With Cut-Segmental Silica-Gel Baffles and Water Cooling for Air Conditioning Coupled With HDH Desalination System
,”
Int. J. Refrig.
,
103
, pp.
155
162
.
21.
Abdelgaied
,
M.
,
Kabeel
,
A. E.
, and
Zakaria
,
Y.
,
2019
, “
Performance Improvement of Desiccant Air Conditioner Coupled With Humidification-Dehumidification Desalination Unit Using Solar Reheating of Regeneration air
,”
Energy Convers. Manage.
,
198
, p.
111808
.
22.
Jamil
,
M. A.
, and
Zubair
,
S. M.
,
2017
, “
Design and Analysis of a Forward Feed Multi-effect Mechanical Vapor Compression Desalination System : An Exergo-economic Approach
,”
Energy
,
140
, pp.
1107
1120
.
23.
Atkins
,
P. W.
,
De Paula
,
J.
, and
Keeler
,
J.
,
2018
,
Atkins’ Physical Chemistry
, 11th ed.,
Oxford University Press
,
Oxford
.
24.
Alkhulaifi
,
Y. M.
,
Mokheimer
,
E. M. A.
, and
AlSadah
J. H.
,
2019
, “
Performance Optimization of Mechanical Vapor Compression Desalination System Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
042008
.
25.
Alkhulaifi
,
Y. M.
, and
Mokheimer
,
E. M. A.
,
2022
, “
Thermodynamic Assessment of Using Water as a Refrigerant in Cascade Refrigeration Systems With Other Environmentally Friendly Refrigerants
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022101
.
26.
Shen
,
J.
,
Xing
,
Z.
,
Wang
,
X.
, and
He
,
Z.
,
2014
, “
Analysis of a Single-Effect Mechanical Vapor Compression Desalination System Using Water Injected Twin Screw Compressors
,”
Desalination
,
333
(
1
), pp.
146
153
.
27.
Shen
,
J.
,
Xing
,
Z.
,
Zhang
,
K.
,
He
,
Z.
, and
Wang
,
X.
,
2016
, “
Development of a Water-Injected Twin-Screw Compressor for Mechanical Vapor Compression Desalination Systems
,”
Appl. Therm. Eng.
,
95
, pp.
125
135
.
28.
Joudi
,
K. A.
,
Mohammed
,
A. S. K.
, and
Aljanabi
,
M. K.
,
2003
, “
Experimental and Computer Performance Study of an Automotive Air Conditioning System With Alternative Refrigerants
,”
Energy Convers. Manage.
,
44
(
18
), pp.
2959
2976
.
29.
Lachner
,
B. F.
,
Nellis
,
G. F.
, and
Reindl
,
D. T.
,
2007
, “
The Commercial Feasibility of the Use of Water Vapor as a Refrigerant
,”
Int. J. Refrig.
,
30
(
4
), pp.
699
708
.
30.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
2002
,
Fundamentals of Salt Water Desalination
, 1st ed.,
Elsevier B.V.
,
Amsterdam
.
31.
Wongwises
,
S.
,
Kamboon
,
A.
, and
Orachon
,
B.
,
2006
, “
Experimental Investigation of Hydrocarbon Mixtures to Replace HFC-134a in an Automotive Air Conditioning System
,”
Energy Convers. Manage.
,
47
(
11–12
), pp.
1644
1659
.
32.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2012
, “
Exergy Analysis of a TMS (Thermal Management System) for Range-Extended EVs (Electric Vehicles)
,”
Energy
,
46
(
1
), pp.
117
125
.
33.
Alkhulaifi
,
Y.
,
2020
, “
Integrated Mechanical Vapor Compression Desalination System and Air-Conditioning System
,” M.Sc. thesis,
King Fahd University of Petroleum & Minerals
, Dhahran, Saudi Arabia.
34.
Hu
,
B.
,
Wu
,
D.
, and
Wang
,
R. Z.
,
2018
, “
Water Vapor Compression and Its Various Applications
,”
Renewable Sustainable Energy Rev.
,
98
, pp.
92
107
.
35.
Chamoun
,
M.
,
Rulliere
,
R.
,
Haberschill
,
P.
, and
Peureux
,
J. L.
,
2013
, “
Modelica-Based Modeling and Simulation of a Twin Screw Compressor for Heat Pump Applications
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
479
489
.
36.
Soltani
,
R.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
, “
Comparative Performance Evaluation of Cascaded Air-Source Hydronic Heat Pumps
,”
Energy Convers. Manage.
,
89
, pp.
577
587
.
37.
Zhao
,
J.
,
Temimi
,
M.
, and
Ghedira
,
H.
,
2017
, “
Remotely Sensed Sea Surface Salinity in the Hyper-saline Arabian Gulf: Application to Landsat 8 OLI Data
,”
Estuarine, Coastal Shelf Sci.
,
187
, pp.
168
177
.
38.
McIlwaine
,
S. J.
, and
Ouda
,
O. K. M.
,
2020
, “
Drivers and Challenges to Water Tariff Reform in Saudi Arabia
,”
Int. J. Water Resour. Dev.
,
36
(
6
), pp.
1014
1030
.
You do not currently have access to this content.