Abstract

This present work reports the combustion studies of coal, petroleum coke (PC) and biomass blends to assess the effects of the mustard husk (MH), wheat straw (WS), and flaxseed residue (FR) blending toward improvement of coal combustion characteristics. Ignition temperature (TS), maximum temperature (TP), burnout temperature (TC), activation energy (AE), and thermodynamic parameters (ΔH, ΔG, and ΔS) were analyzed to evaluate the impact of biomass and PC blending on coal combustion. Experimental results indicate that coal and PC have inferior combustion characteristics compared to MH, WS, and FR. With the increase in WS content in blends from 10 to 30%, TS reduced from 371 to 258 °C and TP decreased from 487 to 481 °C, inferring substantial enhancements in combustion properties. Kinetic analysis inferred that blended fuel combustion could be explained mostly using reaction models, followed by diffusion-controlled and contracting sphere models. Overall, with the increase in FR mass in blends from 10 to 30%, AE decreased from 108.97 kJ/mol to 70.15 kJ/mol signifying ease of combustion. Analysis of synergistic effects infers that higher biomass addition improves coal and PC blends’ combustion behavior through catalytic effects of alkali mineral matters present in biomass. Calculation of thermodynamic parameters signified that combustion of coal and PC is challenging than biomasses; however, blending of biomass makes the combustion process easier.

References

1.
Behera
,
D.
, and
Nandi
,
B. K.
,
2021
, “
Effect of Coal Particle Density on Coal Properties and Combustion Characteristics
,”
Powder Technol.
,
382
, pp.
594
604
.
2.
Duzyol
,
S.
, and
Sensogut
,
C.
,
2018
, “
Investigation of the Thermal Improvement and the Kinetic Analysis of the Enriched Coal
,”
J. Combust.
,
2018
(
10
), p.
1761023
.
3.
Wu
,
J.
,
Cheng
,
F.
, and
Zhang
,
D.
,
2021
, “
Health Effect of Indoor PM2.5 and CO Emission From Coal and Biomass Fired Domestic Appliances in Remote Rural China
,”
Int. J. Energy Clean Environ.
,
22
(
5
), pp.
33
49
.
4.
Le Guevel
,
T.
, and
Thomas
,
P.
,
2003
, “
Fuel Flexibility and Petroleum Coke Combustion at Provence 250 MW CFB
,”
International Fluidized Bed Combustion Conference
,
Jacksonville, FL
,
May 18–21
, pp.
643
649
.
5.
Chen
,
J.
, and
Lu
,
X.
,
2007
, “
Progress of Petroleum Coke Combusting in Circulating Fluidized Bed Boilers – A Review and Future Perspectives
,”
Resour. Conserv. Recycl.
,
49
(
3
), pp.
203
216
.
6.
Zhao
,
C.
,
Chen
,
C.
,
Chen
,
X.
,
Wang
,
F.
,
Wang
,
W.
,
Zhu
,
A.
, and
Wu
,
X.
,
2005
, “
Experimental Study on Characteristics of Pyrolysis, Ignition and Combustion of Blends of Petroleum Coke and Coal in CFB
,”
International Fluidized Bed Combustion Conference
,
Toronto, Ontario, Canada
,
May 22–25
, pp.
617
622
.
7.
Saifullin
,
E. R.
,
Sadikov
,
K. G.
,
Varfolomeev
,
M. A.
,
Emelianov
,
D. A.
, and
Rodionov
,
N. O.
,
2020
, “
Petroleum Coke Combustion in Fixed Fluidized Bed Mode in the Presence of Metal Catalysts
,”
ACS Omega
,
35
, pp.
22171
22178
.
8.
Yuzbasi
,
N. S.
, and
Selçuk
,
N.
,
2020
, “
Air and Oxy-Fuel Combustion Behaviour of Petcoke/Lignite Blends
,”
Fuel
,
92
(
1
), pp.
137
144
.
9.
Aich
,
S.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2019
, “
Utilization of Sal Leaves and Sal Leaves Char to Improve the Combustion Performance of Reject Coal
,”
Energy Sources, Part A
,
41
(
19
), pp.
2299
2312
.
10.
Kastanaki
,
E.
, and
Vamvuka
,
D.
,
2006
, “
A Comparative Reactivity and Kinetic Study on the Combustion of Coal-Biomass Char Blends
,”
Fuel
,
85
(
9
), pp.
1186
1193
.
11.
Kumar
,
P.
, and
Nandi
,
B. K.
,
2021a
, “
Effect of Rice Husk Blending on Combustion Characteristics of High Ash Indian Coal Analyzed in TGA
,”
Int. J. Coal Prep. Util.
, pp.
1
14
.
12.
Singh
,
A.
,
Yadav
,
V. K.
,
Shrivastava
,
D.
,
Singh
,
M. K.
,
Maurya
,
S.
,
Vibhanshu
,
V.
, and
Sharma
,
A. K.
,
2021
, “
Estimation of Performance Parameter of Top-Lit Up-Draft Cookstove Using Locally Available Wood Feedstock
,”
Int. J. Energy Clean Environ.
,
22
(
6
), pp.
129
146
.
13.
Sezer
,
S.
,
Kartal
,
F.
, and
Özveren
,
U.
,
2021
, “
The Investigation of Co-Combustion Process for Synergistic Effects Using Thermogravimetric and Kinetic Analysis With Combustion Index
,”
Ther. Sci. Eng. Prog.
,
23
, p.
100889
.
14.
Oladejo
,
J. M.
,
Adegbite
,
S.
,
Pang
,
C. H.
,
Liu
,
H.
,
Parvez
,
A. S.
, and
Wu
,
T.
,
2017
, “
A Novel Index for the Study of Synergistic Effects During the Co-Processing of Coal and Biomass
,”
Appl. Energy
,
188
, pp.
215
225
.
15.
Behera
,
D.
, and
Nandi
,
B. K.
,
2020
, “
Variations in Combustion of Coal With Average Relative Density and Functional Groups Identified by FTIR Analysis
,”
Int. J. Coal Prep. Util.
,
7
, pp.
766
777
.
16.
García
,
R.
,
Pizarro
,
C.
,
Álvarez
,
A.
,
Lavín
,
A. G.
, and
Bueno
,
J. L.
,
2015
, “
Study of Biomass Combustion Wastes
,”
Fuel
,
148
, pp.
152
159
.
17.
Behera
,
D.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2020
, “
Studies on Combustion Characteristics of Density by Density Analysed Coal
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012301
.
18.
Sarikaya
,
A. C.
,
Acma
,
H. H.
, and
Yaman
,
S.
,
2019
, “
Synergistic Interaction During Co-combustion of Lignite, Biomass, and Their Chars
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122203
.
19.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effect During Co-Pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
20.
Xinjie
,
L.
,
Singh
,
S.
,
Yang
,
H.
,
Wu
,
C.
, and
Zhang
,
S.
,
2021
, “
A Thermogravimetric Assessment of the Tri-Combustion Process for Coal, Biomass and Polyethylene
,”
Fuel
,
287
, p.
119355
.
21.
Yin
,
Y.
,
Yang
,
B.
,
Yin
,
J.
,
Tian
,
H.
,
Zhang
,
W.
,
Cheng
,
S.
,
Hu
,
Z.
, and
Xu
,
H.
,
2020
, “
Kinetic Analysis of Co-firing of Corn Stalk and Paper Sludge Using Model-Fitting and Model-Free Methods
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042301
.
22.
Li
,
B.
,
Liu
,
G.
,
Gao
,
W.
,
Cong
,
H. Y.
,
Bi
,
M. S.
,
Ma
,
L.
,
Deng
,
J.
, and
Shu
,
C. M.
,
2020
, “
Study of Combustion Behaviour and Kinetics Modelling of Chinese Gongwusu Coal Gangue: Model-Fitting and Model-Free Approaches
,”
Fuel
,
268
, p.
117284
.
23.
Wang
,
Q.
,
Wang
,
G.
,
Zhang
,
J.
,
Lee
,
J. Y.
,
Wang
,
H.
, and
Wang
,
C.
,
2018
, “
Combustion Behaviors and Kinetic Analysis of Coal, Biomass and Plastic
,”
Thermochim. Acta
,
669
, pp.
140
148
.
24.
Kumar
,
P.
, and
Nandi
,
B. K.
,
2021b
, “
Combustion Characteristics of High ash Indian Coal, Wheat Straw, Wheat Husk and Their Blends
,”
Mater. Sci. Energy Technol.
,
4
, pp.
274
281
.
25.
Gil
,
M. V.
,
Casal
,
D.
,
Pevida
,
C.
,
Pis
,
J. J.
, and
Rubiera
,
F.
,
2010
, “
Thermal Behaviour and Kinetics of Coal/Biomass Blends During Co-Combustion
,”
Bioresour. Technol.
,
101
(
14
), pp.
5601
5608
.
26.
Hofman
,
L. F.
,
Bayon
,
A.
, and
Donne
,
S. W.
,
2019
, “
Kinetics of Solid-Gas Reactions and Their Application to Carbonate Looping Systems
,”
Energies
,
12
(
15
), p.
2981
.
27.
Alshehri
,
S. M.
,
Monshi
,
M. A. S.
,
El-Salam
,
N. M. A.
, and
Mahfouz
,
R. M.
,
2000
, “
Kinetic of the Thermal Decomposition of γ-Irradiated Cobaltous Acetate
,”
Thermochim. Acta
,
363
(
1–2
), pp.
61
70
.
28.
Yorulmaz
,
S. Y.
, and
Atimtay
,
A. T.
,
2009
, “
Investigation of Combustion Kinetics of Treated and Untreated Waste Wood Samples With Thermogravimetric Analysis
,”
Fuel Process. Technol.
,
90
(
7–8
), pp.
939
946
.
29.
Yang
,
F.
,
Zhou
,
A.
,
Zhao
,
W.
,
Yang
,
Z.
, and
Li
,
H.
,
2019
, “
Thermochemical Behaviors, Kinetics and gas Emission Analyses During Co-Pyrolysis of Walnut Shell and Coal
,”
Thermochim. Acta
,
673
, pp.
26
33
.
30.
Mishra
,
R. K.
, and
Mohnaty
,
K.
,
2020
, “
Kinetic Analysis and Pyrolysis Behaviour of Waste Biomass Towards Its Bioenergy Potential
,”
Bioresour. Technol.
,
311
, p.
123480
.
You do not currently have access to this content.