Abstract

In recent times, the small wind farms consisting of small-scale horizontal-axis wind turbines (SHAWTs) have emerged as suitable candidates for electric power generation. In view of this, an experimental study on the arrays of two SHAWTs has been performed in a wind tunnel to find the individual/combined performance(s) along with the downstream wake assessment. The rotor blades composed of Eppler E216 airfoil and having radius of 120 mm are designed using the blade element momentum theory. The operational limit of tip speed ratio (λ) is kept between 0.5 and 6. The upstream turbine (UsT) is capable to produce a maximum power coefficient (Cpmax) of 0.30 at a wind speed U = 8 m/s, whereas at the same wind speed, the downstream turbine (DsT) produces Cpmax values of 0.12, 0.13, and 0.15 when installed at a distance of 6R, 8R, and 10R from the UsT, respectively. Another notable feature is the change in the operational limit of λ for DsT due to the wake of UsT. The streamwise velocity measurement at the different downstream locations of UsT shows the formation of W-shape velocity deficit within the near wake regime that loses its shape as the distance downstream goes beyond 12R due to ∼60–70% flow recovery.

References

1.
Sadorsky
,
P.
,
2021
, “
Wind Energy for Sustainable Development: Driving Factors and Future Outlook
,”
J. Cleaner Prod.
,
289
, p.
125779
.
2.
Lienard
,
C.
,
Boisard
,
R.
, and
Daudin
,
C.
,
2020
, “
Aerodynamic Behavior of a Floating Offshore Wind Turbine
,”
AIAA J.
,
58
(
9
), pp.
3835
3847
.
3.
Wang
,
C.
, and
Prinn
,
R. G.
,
2010
, “
Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms
,”
Atmos. Chem. Phys.
,
10
(
4
), pp.
2053
2061
.
4.
Marini
,
M.
,
Baccoli
,
R.
,
Mastino
,
C. C.
,
Bella
,
A. D.
,
Bernardini
,
C.
, and
Masullo
,
M.
,
2017
, “
Assessment of the Noise Generated by Wind Turbines at Low Frequencies
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051215
.
5.
Hernandez
,
C. O. M.
,
Shadman
,
M.
,
Amiri
,
M. M.
,
Silva
,
C.
,
Estefen
,
S. F.
, and
Rovere
,
E. L.
,
2021
, “
Environmental Impacts of Offshore Wind Installation, Operation and Maintenance, and Decommissioning Activities: A Case Study of Brazil
,”
Renew. Sustain. Energy Rev.
,
144
, p.
110994
.
6.
Abderrazzaq
,
M. H.
,
2004
, “
Energy Production Assessment of Small Wind Farms
,”
Renew. Energy
,
29
(
15
), pp.
2261
2272
.
7.
Becerra
,
M.
,
Morán
,
J.
,
Jerez
,
A.
,
Cepeda
,
F.
, and
Valenzuela
,
M.
,
2017
, “
Wind Energy Potential in Chile: Assessment of a Small Scale Wind Farm for Residential Clients
,”
Energy Convers. Manage.
,
140
, pp.
71
90
.
8.
Benedict
,
M.
,
Lakshminarayan
,
V.
,
Pino
,
J.
, and
Chopra
,
I.
,
2016
, “
Aerodynamics of a Small-Scale Vertical Axis Wind Turbine With Dynamic Blade Pitching
,”
AIAA J.
,
54
(
3
), pp.
924
935
.
9.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
1351
1371
.
10.
Siram
,
O.
,
Kesharwani
,
N.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Aerodynamic Design and Wind Tunnel Tests of Small-Scale Horizontal-Axis Wind Turbines for Low Tip Speed Ratio Applications
,”
ASME J. Sol. Energy Eng.
, pp.
1
34
.
11.
Refan
,
M.
, and
Hangan
,
H.
,
2012
, “
Aerodynamic Performance of a Small Horizontal Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021013
.
12.
Singh
,
R. K.
, and
Ahmed
,
M. R.
,
2013
, “
Blade Design and Performance Testing of a Small Wind Turbine Rotor for Low Wind Speed Applications
,”
Renew. Energy
,
50
, pp.
812
819
.
13.
Venters
,
R.
, and
Helenbrook
,
B. T.
,
2016
, “
Ducted Wind Turbine Optimization
,”
34th AIAA Applied Aerodynamic Conference
,
Washington, DC
,
June 13–17
.
14.
Mohammed
,
A. A.
,
Sahin
,
A. S.
, and
Ouakad
,
H. M.
,
2020
, “
Numerical Investigation of A VAWT Performance Characterization Using New Variable Pitch Control Scheme
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031302
.
15.
Keisar
,
D.
,
Troyer
,
T. D.
, and
Greenblatt
,
D.
,
2020
, “
Concept and Operation of a Wind Turbine Driven by Dynamic Stall
,”
AIAA J.
,
58
(
6
), pp.
2370
2376
.
16.
Belgili
,
M.
,
Tontu
,
M.
, and
Sahin
,
B.
,
2021
, “
Aerodynamic Rotor Performance of a 3300 kW Modern Commercial Large Scale Wind Turbine Installed in a Wind Farm
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031302
.
17.
Fuglsang
,
P.
,
Bak
,
C.
,
Gaunaa
,
M.
, and
Antoniou
,
I.
,
2004
, “
Design and Verification of the Risø-B1 Airfoil Family for Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
1003
1010
.
18.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
19.
Kumar
,
R.
,
Siram
,
O.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2021
, “
Characterizing the Transitional Behavior of Wind Turbine Wake From Near to Far Wake Regimes
,”
Proceedings of the ASME 2021 Power Conference
,
Virtual, Online
,
July 20–22
, p.
V001T09A015
, Paper No. POWER2021-65959.
20.
Sedaghatizadeh
,
N.
,
Arjomandi
,
M.
,
Kelso
,
R.
,
Cazzolato
,
B.
, and
Ghayesh
,
M. H.
,
2019
, “
The Effect of the Boundary Layer on the Wake of a Horizontal Axis Wind Turbine
,”
Energy
,
182
, pp.
1202
1221
.
21.
Dou
,
B.
,
Guala
,
M.
,
Zeng
,
P.
, and
Lei
,
L.
,
2019
, “
Experimental Investigation of the Power Performance of a Minimal Wind Turbine Array in an Atmospheric Boundary Layer Wind Tunnel
,”
Energy Convers. Manage.
,
196
, pp.
906
919
.
22.
Tian
,
L.
,
Song
,
Y.
,
Zhao
,
N.
,
Shen
,
W.
,
Wang
,
T.
, and
Zhu
,
C.
,
2020
, “
Numerical Investigations Into the Idealized Diurnal Cycle of Atmospheric Boundary Layer and Its Impact on Wind Turbine’s Power Performance
,”
Renew. Energy
,
145
, pp.
419
427
.
23.
Faghani
,
G. H. R.
,
Ashrafi
,
Z. N.
, and
Sedaghat
,
A.
,
2018
, “
Extrapolating Wind Data at High Altitudes With High Precision Methods for Accurate Evaluation of Wind Power Density, Case Study: Center of Iran
,”
Energy Convers. Manage.
,
157
, pp.
317
338
.
24.
Adhikari
,
J.
,
Sapkota
,
R.
, and
Panda
,
S. K.
,
2018
, “
Impact of Altitude and Power Rating on Power-to-Weight and Power-to-Cost Ratios of the High Altitude Wind Power Generating System
,”
Renew. Energy
,
115
, pp.
16
27
.
25.
Tieleman
,
H.
,
1992
, “
Wind Characteristics in the Surface Layer Over Heterogeneous Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
41
(
1–3
), pp.
329
340
.
26.
Bahramara
,
S.
,
Moghaddam
,
M. P.
, and
Haghifam
,
M.
,
2016
, “
Optimal Planning of Hybrid Renewable Energy Systems Using HOMER: A Review
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
609
620
.
27.
Sunderland
,
K. M.
,
Narayana
,
M.
,
Putrus
,
G.
,
Conlon
,
M. F.
, and
McDonald
,
S.
,
2016
, “
The Cost of Energy Associated With Micro Wind Generation: International Case Studies of Rural and Urban Installations
,”
Energy
,
109
, pp.
818
829
.
28.
Li
,
Z.
,
Boyle
,
F.
, and
Reynolds
,
A.
,
2012
, “
Domestic Application of Micro Wind Turbines in Ireland: Investigation of Their Economic Viability
,”
Renew. Energy
,
41
, pp.
64
74
.
29.
Khorsand
,
I.
,
Dallas
,
C.
,
Magni
,
A.
, and
Crawford
,
C.
,
2018
, “
Design and Characterization of a Trailer-Based Horizontal-Axis Wind Turbine Test Rig
,”
ASME J. Sol. Energy Eng.
,
140
(
4
), p.
041007
.
30.
Eltayesh
,
A.
,
Castellani
,
F.
,
Burlando
,
M.
,
Hanna
,
M. B.
,
Huzayyin
,
A. S.
,
El-Batsh
,
H. M.
, and
Becchetti
,
M.
,
2021
, “
Experimental and Numerical Investigation of the Effect of Blade Number on the Aerodynamic Performance of a Small-Scale Horizontal Axis Wind Turbine
,”
Alexandria Eng. J.
,
60
(
4
), pp.
3931
3944
.
31.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2021
, “
Experimental Study on Small Scale Horizontal Axis Wind Turbine of Analytically-Optimized Blade With Linearized Chord Twist Angle Profile
,”
Energy
,
216
, p.
119304
.
32.
Taylor
,
J.
,
Eastwick
,
C.
,
Lawrence
,
C.
, and
Wilson
,
R.
,
2013
, “
Noise Levels and Noise Perception From Small and Micro Wind Turbines
,”
Renew. Energy
,
55
, pp.
120
127
.
33.
Grant
,
I.
, and
Parkin
,
P.
,
2000
, “
A DPIV Study of the Trailing Vortex Elements From the Blades of a Horizontal Axis Wind Turbine in Yaw
,”
Exp. Fluids
,
28
(
4
), pp.
368
376
.
34.
Adaramola
,
M. S.
, and
Krogstad
,
P.-Å.
,
2011
, “
Experimental Investigation of Wake Effects on Wind Turbine Performance
,”
Renew. Energy
,
36
(
8
), pp.
2078
2086
.
35.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
36.
Medici
,
D.
, and
Alfredsson
,
P. H.
,
2006
, “
Measurements on a Wind Turbine Wake: 3D Effects and Bluff Body Vortex Shedding
,”
Wind Energy
,
9
(
3
), pp.
219
236
.
37.
Medici
,
D.
, and
Alfredsson
,
P. H.
,
2008
, “
Measurements Behind Model Wind Turbines: Further Evidence of Wake Meandering
,”
Wind Energy
,
11
(
2
), pp.
211
217
.
38.
Hancock
,
P. E.
,
Zhang
,
S.
,
Pascheke
,
F.
, and
Hayden
,
P.
,
2014
, “
Wind Tunnel Simulation of a Wind Turbine Wake in Neutral, Stable and Unstable Wind Flow
,”
J. Phys. Conf. Ser.
,
555
, p.
012047
.
39.
Sinha
,
S.
, and
Chandel
,
S.
,
2014
, “
Review of Software Tools for Hybrid Renewable Energy Systems
,”
Renew. Sustain. Energy Rev.
,
32
, pp.
192
205
.
40.
Wei
,
Y.
,
Wei
,
T.
,
Ahmet
,
O.
, and
Hui
,
H.
,
2014
, “
An Experimental Study on the Effects of Relative Rotation Direction on the Wake Interferences Among Tandem Wind Turbines
,”
Sci. China: Phys. Mech. Astron.
,
57
(
5
), pp.
935
949
.
41.
Annoni
,
J.
,
Howard
,
K.
,
Seiler
,
P.
, and
Guala
,
M.
,
2016
, “
An Experimental Investigation on the Effect of Individual Turbine Control on Wind Farm Dynamics
,”
Wind Energy
,
19
(
8
), pp.
1453
1467
.
42.
Tian
,
W.
,
Ozbay
,
A.
, and
Hui
,
H.
,
2017
, “
An Experimental Investigation on the Wake Interferences Among Wind Turbines Sited in Aligned and Staggered Wind Farms
,”
Wind Energy
,
21
(
2
), pp.
100
114
.
43.
Gupta
,
R. K.
,
Warudkar
,
V.
,
Purohit
,
R.
, and
Rajpurohit
,
R. S.
,
2017
, “
Modelling and Aerodynamic Analysis of Small-Scale, Mixed Airfoil Horizontal Axis Wind Turbine Blade
,”
Mater. Today: Proc.
,
4
(
4, Part D
), pp.
5370
5384
.
44.
Siram
,
O.
, and
Sahoo
,
N.
,
2019
, “
Near Wake Regime Study on Wind Turbine Blade Tip Vortex
,”
Proceedings of the ASME 2019 Gas Turbine India Conference
,
Chennai, Tamil Nadu, India
,
Dec. 5–6
, p.
V002T06A012
, ASME Paper No. GTINDIA2019-2493.
45.
Werle
,
M. J.
,
2010
, “
Wind Turbine Wall-Blockage Performance Corrections
,”
AIAA J. Propul. Power
,
26
(
6
), pp.
1317
1321
.
46.
Bruun
,
H. H.
,
1995
,
Hot-Wire Anemometry: Principles and Signal Analysis
,
Oxford University Press
,
Oxford
.
47.
Gupta
,
S. V.
,
2012
,
Measurement Uncertainties: Physical Parameters and Calibration of Instruments
,
Springer
,
Berlin
.
48.
Siram
,
O.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2022
, “
Wind Tunnel Tests of a Model Small-Scale Horizontal-Axis Wind Turbine Developed From Blade Element Momentum Theory
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
064502
.
49.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2010
,
Wind Energy Explained: Theory, Design and Application
,
John Wiley & Sons
,
Chichester, UK
.
50.
Rocha
,
P. A. C.
,
Carneiro de Araujo
,
J. W.
,
Lima
,
R. J. P.
,
Vieira da Silva
,
M. E.
,
Albiero
,
D.
,
de Andrade
,
C.
, and
Carneiro
,
F. O. M.
,
2018
, “
The Effects of Blade Pitch Angle on the Performance of Small-Scale Wind Turbine in Urban Environments
,”
Energy
,
148
, pp.
169
178
.
51.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Influence of Blade Profiles on Savonius Rotor Performance: Numerical Simulation and Experimental Validation
,”
Energy Convers. Manage.
,
186
, pp.
267
277
.
52.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.
53.
Krogstad
,
P.-Å.
, and
Eriksen
,
P. E.
,
2013
, “
‘Blind Test’ Calculations of the Performance and Wake Development for a Model Wind Turbine
,”
Renew. Energy
,
50
, pp.
325
333
.
54.
Zhang
,
W.
,
Markfort
,
C. D.
, and
Porté-Agel
,
F.
,
2012
, “
Near-Wake Flow Structure Downwind of a Wind Turbine in a Turbulent Boundary Layer
,”
Exp. Fluids
,
52
(
5
), pp.
1219
1235
.
55.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
SME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
.
56.
Talavera
,
M.
, and
Shu
,
F.
,
2017
, “
Experimental Study of Turbulence Intensity Influence on Wind Turbine Performance and Wake Recovery in a Low-Speed Wind Tunnel
,”
Renew. Energy
,
109
, pp.
363
371
.
57.
Kecskemety
,
K. M.
, and
McNamara
,
J. J.
,
2011
, “
Influence of Wake Effects and Inflow Turbulence on Wind Turbine Loads
,”
AIAA J.
,
49
(
11
), pp.
2564
2576
.
You do not currently have access to this content.