Abstract

This study presents the influence of low-temperature heat release (LTHR) and high-temperature heat release (HTHR) on the combustion and particle number characteristics of the RCCI engine. The study investigates the relationship between the amount of LTHR, HTHR, and particle number emission characteristics. In this study, gasoline and methanol are used as low reactivity fuel (LRF), and diesel is used as a high reactivity fuel (HRF). The LRF is injected into the intake manifold using a port-fuel injection (PFI) strategy, and HRF is directly injected into the cylinder using a direct injection strategy. A particle sizer is used to measure particle emission in size ranging from 5 to 1000 nm. First, the LTHR and HTHR are analyzed for different diesel injection timing (SOI) for RCCI operation. Later, the variation of particle emissions with LTHR and HTHR is characterized. Additionally, empirical correlations are developed to understand the relation between the LTHR and HTHR with particle emission. Two-staged auto-ignition of charge has been observed in RCCI combustion. Results depict that LTHR varies with diesel injection timing and the phasing of HTHR depends on the amount and location of LTHR. Results also showed that HTHR and LTHR significantly influence the formation of particle number concentration in RCCI combustion. The developed empirical correlation depicts a good correlation between diesel SOI and the ratio of HTHR to LTHR to estimate total particle number concentration.

References

1.
Soriano
,
J. A.
,
García-Contreras
,
R.
,
de la Fuente
,
J.
,
Armas
,
O.
,
Orozco-Jiménez
,
L. Y.
, and
Agudelo
,
J. R.
,
2020
, “
Genotoxicity and Mutagenicity of Particulate Matter Emitted From Diesel, Gas to Liquid, Biodiesel, and Farnesane Fuels: A Toxicological Risk Assessment
,”
Fuel
,
282
, p.
118763
.
2.
Xu
,
J.
,
Jin
,
T.
,
Miao
,
Y.
,
Han
,
B.
,
Gao
,
J.
,
Bai
,
Z.
, and
Xu
,
X.
,
2015
, “
Individual and Population Intake Fractions of Diesel Particulate Matter (DPM) in Bus Stop Microenvironments
,”
Environ. Pollut.
,
207
, pp.
161
167
.
3.
Gangwar
,
R. S.
,
Bevan
,
G. H.
,
Palanivel
,
R.
,
Das
,
L.
, and
Rajagopalan
,
S.
,
2020
, “
Oxidative Stress Pathways of Air Pollution Mediated Toxicity: Recent Insights
,”
Redox Biol.
,
34
, p.
101545
.
4.
Chang
,
P.
, and
Xu
,
G.
,
2017
, “
A Review of the Health Effects and Exposure-Responsible Relationship of Diesel Particulate Matter for Underground Mines
,”
Int. J. Min. Sci. Technol.
,
27
(
5
), pp.
831
838
.
5.
Pant
,
P.
, and
Harrison
,
R. M.
,
2012
, “
Critical Review of Receptor Modelling for Particulate Matter: A Case Study of India
,”
Atmos. Environ.
,
49
, pp.
1
12
.
6.
SAE
,
1993
,
Chemical Methods for the Measurement of Nonregulated Diesel Emissions
.
SAE Handbook, Vol. 3, Engines, Fuels, Lubricants, Emissions, and Noise, Society of Automotive Engineers
,
Warrendale, PA
,
25
38
.
7.
Lapuerta
,
M.
,
Rodríguez–Fernández
,
J.
, and
Sánchez-Valdepeñas
,
J.
,
2020
, “
Soot Reactivity Analysis and Implications on Diesel Filter Regeneration
,”
Prog. Energy Combust. Sci.
,
78
, p.
100833
.
8.
Giechaskiel
,
B.
,
Manfredi
,
U.
, and
Martini
,
G.
,
2014
, “
Engine Exhaust Solid Sub-23nm Particles: I. Literature Survey
,”
SAE Int. J. Fuels Lubr.
,
7
(
3
), pp.
950
964
.
9.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
.
10.
Krishnamoorthi
,
M.
,
Malayalamurthi
,
R.
,
He
,
Z.
, and
Kandasamy
,
S.
,
2019
, “
A Review on Low Temperature Combustion Engines: Performance, Combustion and Emission Characteristics
,”
Renewable Sustainable Energy Rev.
,
116
, p.
109404
.
11.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Kumar
,
V.
,
2021
, “
Reactivity Controlled Compression Ignition Engine Fueled With Mineral Diesel and Butanol at Varying Premixed Ratios and Loads
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022304
.
12.
Pachiannan
,
T.
,
Zhong
,
W.
,
Rajkumar
,
S.
,
He
,
Z.
,
Leng
,
X.
, and
Wang
,
Q.
,
2019
, “
A Literature Review of Fuel Effects on Performance and Emission Characteristics of Low-Temperature Combustion Strategies
,”
Appl. Energy
,
251
, p.
113380
.
13.
Singh
,
A. P.
,
Sharma
,
N.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Premixed Ratio on Mineral Diesel-Methanol Fueled Reactivity Controlled Compression Ignition Mode Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122301
.
14.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2018
,
Effect of Diesel Injection Timing on Peak Pressure Rise Rate and Combustion Stability in RCCI Engine
, SAE Technical Paper No. 2018-01-1731.
15.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2018
,
Effect of Fuel Injection Strategy on Nanoparticle Emissions From RCCI Engine
, SAE Technical Paper No. 2018-01-1709.
16.
Saxena
,
S.
, and
Bedoya
,
I. D.
,
2013
, “
Fundamental Phenomena Affecting Low Temperature Combustion and HCCI Engines, High Load Limits and Strategies for Extending These Limits
,”
Prog. Energy Combust. Sci.
,
39
(
5
), pp.
457
488
.
17.
Christensen
,
M.
,
Hultqvist
,
A.
, and
Johansson
,
B.
,
1999
, “
Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine With Variable Compression Ratio
,”
SAE Trans.
,
3
(
1
), pp.
2099
2113
.
18.
Maurya
,
R. K.
,
2018
,
Characteristics and Control of Low Temperature Combustion Engines: Employing Gasoline, Ethanol and Methanol
,
Springer
,
New York
.
19.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2007
, “
Comparing Late-Cycle Autoignition Stability for Single-and Two-Stage Ignition Fuels in HCCI Engines
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2895
2902
.
20.
Hwang
,
W.
,
Dec
,
J.
, and
Sjöberg
,
M.
,
2008
, “
Spectroscopic and Chemical-Kinetic Analysis of the Phases of HCCI Autoignition and Combustion for Single-and Two-Stage Ignition Fuels
,”
Combust. Flame
,
154
(
3
), pp.
387
409
.
21.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2007
, “
EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release Over Wide Ranges of Engine Speed
,”
SAE Trans.
,
116
(
3
), pp.
65
77
.
22.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2019
, “Nanoparticle Emissions in Reactivity-Controlled Compression Ignition Engine,”
Engine Exhaust Particulates
,
A. K.
Agarwal
,
A.
Dhar
,
N.
Sharma
, and
P. C.
Shukla
, eds., 1st ed.,
Springer
,
Singapore
, pp.
239
266
.
23.
Benajes
,
J.
,
García
,
A.
,
Monsalve-Serrano
,
J.
, and
Boronat
,
V.
,
2017
, “
An Investigation on the Particulate Number and Size Distributions Over the Whole Engine Map From an Optimized Combustion Strategy Combining RCCI and Dual-Fuel Diesel-Gasoline
,”
Energy Convers. Manage.
,
140
, pp.
98
108
.
24.
Benajes
,
J.
,
Garcia
,
A.
,
Monsalve-Serrano
,
J.
, and
Boronat
,
V.
,
2017
, “
Particulates Size Distribution of Reactivity Controlled Compression Ignition (RCCI) on a Medium-Duty Engine Fueled With Diesel and Gasoline at Different Engine Speeds
,”
SAE Int. J. Engines
,
10
(
5
), pp.
2382
2391
.
25.
Zhang
,
Y.
,
Ghandhi
,
J.
, and
Rothamer
,
D.
,
2014
, “
Comparison of Particulate Size Distributions From Advanced and Conventional Combustion-Part I: CDC, HCCI, and RCCI
,”
SAE Int. J. Engines
,
7
(
2
), pp.
820
834
.
26.
Pan
,
S.
,
Li
,
X.
,
Han
,
W.
, and
Huang
,
Y.
,
2017
, “
An Experimental Investigation on Multi-Cylinder RCCI Engine Fueled With 2-Butanol/Diesel
,”
Energy Convers. Manage.
,
154
, pp.
92
101
.
27.
Prikhodko
,
V. Y.
,
Curran
,
S. J.
,
Barone
,
T. L.
,
Lewis
,
S. A.
,
Storey
,
J. M.
,
Cho
,
K.
,
Wagner
,
R. M.
, and
Parks
,
J. E.
,
2011
, “
Diesel Oxidation Catalyst Control of Hydrocarbon Aerosols From Reactivity Controlled Compression Ignition Combustion
,”
ASME International Mechanical Engineering Congress and Exposition
,
Denver, CO
,
Nov. 11–17
, Vol.
54952
, pp.
273
278
.
28.
Fang
,
W.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2017
, “
Dilution Sensitivity of Particulate Matter Emissions From Reactivity-Controlled Compression Ignition Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p. 032204.
29.
Pan
,
S.
,
Liu
,
X.
,
Cai
,
K.
,
Li
,
X.
,
Han
,
W.
, and
Li
,
B.
,
2020
, “
Experimental Study on Combustion and Emission Characteristics of Iso-Butanol/Diesel and Gasoline/Diesel RCCI in a Heavy-Duty Engine Under Low Loads
,”
Fuel
,
261
, p.
116434
.
30.
Park
,
S. H.
, and
Yoon
,
S. H.
,
2016
, “
Effect of Dual-Fuel Combustion Strategies on Combustion and Emission Characteristics in Reactivity Controlled Compression Ignition (RCCI) Engine
,”
Fuel
,
181
, pp.
310
318
.
31.
Kolodziej
,
C.
,
Wissink
,
M.
,
Splitter
,
D.
,
Hanson
,
R.
,
Reitz
,
R. D.
, and
Benajes
,
J.
,
2013
,
Particle Size and Number Emissions From RCCI With Direct Injections of Two Fuels
, SAE Technical Paper No. 2013-01-1661.
32.
He
,
Z.
,
Li
,
J.
,
Mao
,
Y.
,
Yu
,
L.
,
Zhou
,
Q.
,
Qian
,
Y.
, and
Lu
,
X.
,
2019
, “
A Comprehensive Study of Fuel Reactivity on Reactivity Controlled Compression Ignition Engine: Based on Gasoline and Diesel Surrogates
,”
Fuel
,
255
, p.
115822
.
33.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
, and
Agarwal
,
A. K.
,
2020
, “
Experimental Investigations of Mineral Diesel/Methanol-Fueled Reactivity Controlled Compression Ignition Engine Operated at Variable Engine Loads and Premixed Ratios
,”
Int. J. Engine Res.
,
22
(
7
), pp.
2375
2389
.
34.
Singh
,
A. P.
,
Kumar
,
V.
, and
Agarwal
,
A. K.
,
2021
, “
Evaluation of Reactivity Controlled Compression Ignition Mode Combustion Engine Using Mineral Diesel/Gasoline Fuel Pair
,”
Fuel
,
301
, p.
120986
.
35.
Abdul-Khalek
,
I.
,
Kittelson
,
D.
, and
Brear
,
F.
,
1999
, “
The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Easurements
,”
SAE Trans.
,
108
(
1
), pp.
563
571
.
36.
Kawai
,
T.
,
Goto
,
Y.
, and
Odaka
,
M.
,
2004
,
Influence of Dilution Process on Engine Exhaust Nanoparticles SAE Technical Paper No. 2004-01-0963
.
37.
Qian
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
, and
Lu
,
X.
,
2017
, “
Particulate Matter Emission Characteristics of a Reactivity Controlled Compression Ignition Engine Fueled With Biogas/Diesel Dual Fuel
,”
J. Aerosol Sci.
,
113
, pp.
166
177
.
38.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2020
, “
Influence of Direct Injection Timing and Mass of Port Injected Gasoline on Unregulated and Nanoparticle Emissions From RCCI Engine
,”
Fuel
,
282
, p.
118815
.
39.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2020
, “
Influence of Fuel Injection Pressure and Injection Timing on Nanoparticle Emission in Light-Duty Gasoline/Diesel RCCI Engine
,”
Part. Sci. Technol.
,
39
(
5
), pp.
641
650
.
40.
Kittelson
,
D. B.
,
1998
, “
Engines and Nanoparticles: A Review
,”
J. Aerosol Sci.
,
29
(
5–6
), pp.
575
588
.
41.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2020
,
Experimental Investigation of Combustion Stability and Particle Emission From CNG/Diesel RCCI Engine
, SAE Technical Paper No. 2020-01-0810.
42.
Nazemi
,
M.
, and
Shahbakhti
,
M.
,
2016
, “
Modeling and Analysis of Fuel Injection Parameters for Combustion and Performance of an RCCI Engine
,”
Appl. Energy
,
165
, pp.
135
150
.
43.
Walker
,
N. R.
,
Dempsey
,
A. B.
,
Andrie
,
M. J.
, and
Reitz
,
R. D.
,
2013
, “
Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation
,”
SAE Int. J. Engines
,
6
(
2
), pp.
1222
1237
.
44.
Hanson
,
R.
,
Curran
,
S.
,
Wagner
,
R.
,
Kokjohn
,
S.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2012
, “
Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-cylinder Engine
,”
SAE Int. J. Engines
,
5
(
2
), pp.
286
299
.
45.
Wei
,
L.
,
Yao
,
C.
,
Wang
,
Q.
,
Pan
,
W.
, and
Han
,
G.
,
2015
, “
Combustion and Emission Characteristics of a Turbocharged Diesel Engine Using High Premixed Ratio of Methanol and Diesel Fuel
,”
Fuel
,
140
, pp.
156
163
.
46.
Chen
,
G.
,
Shen
,
Y.
,
Zhang
,
Q.
,
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2013
, “
Experimental Study on Combustion and Emission Characteristics of a Diesel Engine Fueled With 2, 5-Dimethylfuran–Diesel, n-Butanol–Diesel and Gasoline–Diesel Blends
,”
Energy
,
54
, pp.
333
342
.
48.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2018
,
Effect of Butanol Addition on Performance, Combustion Stability and Nano-Particle Emissions of a Conventional Diesel Engine
, SAE Technical Paper No. 2018-01-1795.
49.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
50.
Maurya
,
R. K.
,
2019
,
Reciprocating Engine Combustion Diagnostics: In-Cylinder Pressure Measurement and Analysis
,
Springer
,
New York
.
51.
Gatowski
,
J. A.
,
Balles
,
E. N.
,
Chun
,
K. M.
,
Nelson
,
F. E.
,
Ekchian
,
J. A.
, and
Heywood
,
J. B.
,
1984
, “
Heat Release Analysis of Engine Pressure Data
,”
SAE Trans.
,
93
(
5
), pp.
961
977
.
52.
Cambustion Ltd.
,
2015
, DMS 500 User Manual, Version 4.04.
53.
Sarathy
,
S. M.
,
Oßwald
,
P.
,
Hansen
,
N.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Alcohol Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
44
, pp.
40
102
.
54.
Dayma
,
G.
,
Ali
,
K. H.
, and
Dagaut
,
P.
,
2007
, “
Experimental and Detailed Kinetic Modeling Study of the High Pressure Oxidation of Methanol Sensitized by Nitric Oxide and Nitrogen Dioxide
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
411
418
.
55.
Inagaki
,
K.
,
Fuyuto
,
T.
,
Nishikawa
,
K.
,
Nakakita
,
K.
, and
Sakata
,
I.
,
2006
,
Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability
, SAE Technical Paper No. 2006-01-0028.
56.
Paykani
,
A.
,
Kakaee
,
A. H.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2016
, “
Progress and Recent Trends in Reactivity-Controlled Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
5
), pp.
481
524
.
57.
Kumar
,
K.
, and
Sung
,
C. J.
,
2011
, “
Autoignition of Methanol: Experiments and Computations
,”
Int. J. Chem. Kinet.
,
43
(
4
), pp.
175
184
.
58.
Tan
,
P. Q.
,
Hu
,
Z. Y.
,
Lou
,
D. M.
, and
Li
,
B.
,
2009
,
Particle Number and Size Distribution From a Diesel Engine With Jatropha Biodiesel Fuel
, SAE Technical Paper No. 2009-01-2726.
59.
Baumgard
,
K. J.
, and
Kittelson
,
D. B.
,
1985
, “
The Influence of a Ceramic Particle Trap on the Size Distribution of Diesel Particles
,”
SAE Trans.
,
94
(
1
), pp.
58
69
.
60.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2016
, “
Effect of Butanol Blends on Nano Particle Emissions From a Stationary Conventional Diesel Engine
,”
Aerosol Air Qual. Res.
,
16
(
9
), pp.
2255
2266
.
61.
Smith
,
O. I.
,
1981
, “
Fundamentals of Soot Formation in Flames With Application to Diesel Engine Particulate Emissions
,”
Prog. Energy Combust. Sci. (United Kingdom)
,
7
(
4
), pp.
275
291
.
62.
RÖnkkÖ
,
T.
,
Virtanen
,
A.
,
Kannosto
,
J.
,
Keskinen
,
J.
,
Lappi
,
M.
, and
Pirjola
,
L.
,
2007
, “
Nucleation Mode Particles With a Nonvolatile Core in the Exhaust of a Heavy Duty Diesel Vehicle
,”
Environ. Sci. Technol.
,
41
(
18
), pp.
6384
6389
.
63.
Lähde,
,
T.
,
Rönkkö
,
T.
,
Virtanen
,
A.
,
Solla
,
A.
,
Kytö
,
M.
,
Söderström
,
C.
, and
Keskinen
,
J.
,
2010
, “
Dependence Between Nonvolatile Nucleation Mode Particle and Soot Number Concentrations in an EGR Equipped Heavy-Duty Diesel Engine Exhaust
,”
Environ. Sci. Technol.
,
44
(
8
), pp.
3175
3180
.
64.
Lähde
,
T.
,
Rönkkö
,
T.
,
Happonen
,
M.
,
Söderström
,
C.
,
Virtanen
,
A.
,
Solla
,
A.
,
Kytö
,
M.
,
Rothe
,
D.
, and
Keskinen
,
J.
,
2011
, “
Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission
,”
Environ. Sci. Technol.
,
45
(
6
), pp.
2504
2509
.
65.
Filippo
,
A. D.
, and
Maricq
,
M. M.
,
2008
, “
Diesel Nucleation Mode Particles: Semivolatile or Solid?
,”
Environ. Sci. Technol.
,
42
(
21
), pp.
7957
7962
.
66.
Saxena
,
M. R.
, and
Maurya
,
R. K.
,
2017
, “
Effect of Premixing Ratio, Injection Timing and Compression Ratio on Nano Particle Emissions From Dual Fuel Non-Road Compression Ignition Engine Fueled With Gasoline/Methanol (Port Injection) and Diesel (Direct Injection)
,”
Fuel
,
203
, pp.
894
914
.
67.
Agarwal
,
A. K.
,
Srivastava
,
D. K.
,
Dhar
,
A.
,
Maurya
,
R. K.
,
Shukla
,
P. C.
, and
Singh
,
A. P.
,
2013
, “
Effect of Fuel Injection Timing and Pressure on Combustion, Emissions and Performance Characteristics of a Single Cylinder Diesel Engine
,”
Fuel
,
111
, pp.
374
383
.
68.
Chuepeng
,
S.
,
Theinnoi
,
K.
, and
Tongroon
,
M.
,
2017
,
Combustion Characteristics and Particulate Matter Number Size Study of Ethanol and Diesel Reactivity Controlled Compression Ignition Engine SAE Technical Paper No. 2017-24-0143
.
69.
Aceves
,
S. M.
,
Flowers
,
D. L.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
,
Pitz
,
W.
,
Dibble
,
R.
,
Christensen
,
M.
, and
Johansson
,
B.
,
2000
, “
A Multi-Zone Model for Prediction of HCCI Combustion and Emissions
,”
SAE Trans.
,
109
(
3
), pp.
431
441
.
You do not currently have access to this content.