Abstract

Injecting low-salinity water has proved to be an efficient displacement process in oil reservoirs, owing to its ability to modify the properties at the fluid-rock and fluid-fluid interfaces in favor of mobilizing more oil. In this regard, reduction of interfacial tension (IFT) between oil and water is one of the key controlling parameters. It is suspected that the asphaltene constituents of the oil and type of water ions are responsible for such a reduction in IFT. In this study, systematic experimental investigations were carried out to scrutinize the influence of brine salinity, asphaltene concentration, and temperature on IFT. Single and multi-component brines, which in particular compose of NaCl, CaCl2, and MgCl2 salts, and two synthetic oils with 1 and 10 wt% asphaltene content were used at temperatures ranging from 25 to 80 °C. The results showed that the presence of salt in the solution can alter the distribution of polar components at the oil-brine interface due to the electrostatic effects, which in turn would change IFT of the system. IFT also decreased when temperature increased from 25 to 80 °C; however, the level of changes was strongly depended on the brine type, salinity level, and asphaltene content. The results also demonstrated that the crude oil with the higher asphaltene concentration experiences higher IFT reduction when is contacted with the low-salinity water. The new findings from this study will improve the understanding of the underlying mechanisms for low salinity water flooding in oil reservoirs.

References

1.
Vledder
,
P.
,
Fonseca
,
J. C.
,
Wells
,
T.
,
Gonzalez
,
I.
, and
Ligthelm
,
D.
,
2010
, “
Low Salinity Water Flooding: Proof of Wettability Alteration On A Field Wide Scale
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Society of Petroleum Engineers
, p.
10
.
2.
Strand
,
S.
,
Austad
,
T.
,
Puntervold
,
T.
,
Høgnesen
,
E. J.
,
Olsen
,
M.
, and
Barstad
,
S. M. F.
,
2008
, “
“Smart Water” for Oil Recovery From Fractured Limestone: A Preliminary Study
,”
Energy Fuels
,
22
(
5
), pp.
3126
3133
.
3.
RezaeiDoust
,
A.
,
Puntervold
,
T.
,
Strand
,
S.
, and
Austad
,
T.
,
2009
, “
Smart Water as Wettability Modifier in Carbonate and Sandstone: A Discussion of Similarities/Differences in the Chemical Mechanisms
,”
Energy Fuels
,
23
(
9
), pp.
4479
4485
.
4.
Fathi
,
S. J.
,
Austad
,
T.
, and
Strand
,
S.
,
2010
, “
“Smart Water” as a Wettability Modifier in Chalk: The Effect of Salinity and Ionic Composition
,”
Energy Fuels
,
24
(
4
), pp.
2514
2519
.
5.
Tang
,
G.
, and
Morrow
,
N. R.
,
2002
, “
Injection of Dilute Brine and Crude Oil/Brine/Rock Interactions
,”
Environmental Mechanics
, pp.
171
179
.
6.
Webb
,
K. J.
,
Black
,
C. J. J.
, and
Al-Ajeel
,
H.
,
2003
,
Low Salinity Oil Recovery—Log-Inject-Log, in Middle East Oil Show
,
Society of Petroleum Engineers
,
Bahrain
,
8
.
7.
Yanan Ding
,
Y.
,
Zheng
,
S.
,
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072904
.
8.
Robertson
,
E. P.
,
2010
, “
Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations
,”
SPE Annual Technical Conference and Exhibition
,
Idaho National Laboratory (INL). Medium: ED
,
Florence, Italy
,
Oct. 19–22
.
9.
Vijapurapu
,
C. S.
, and
Rao
,
D. N.
,
2004
, “
Compositional Effects of Fluids on Spreading, Adhesion and Wettability in Porous Media
,”
Colloids Surf., A
,
241
(
1
), pp.
335
342
.
10.
Okasha
,
T. M.
, and
Al-Shiwaish
,
A.-J. A.
,
2010
, “
Effect of Temperature and Pressure on Interfacial Tension and Contact Angle of Khuff Gas Reservoir, Saudi Arabia
,”
SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition
,
Al-Khobar, Saudi Arabia
,
Society of Petroleum Engineers
, p.
11
.
11.
Austad
,
T.
,
Shariatpanahi
,
S. F.
,
Strand
,
S.
,
Aksulu
,
H.
, and
Puntervold
,
T.
,
2015
, “
Low Salinity EOR Effects in Limestone Reservoir Cores Containing Anhydrite: A Discussion of the Chemical Mechanism
,”
Energy Fuels
,
29
(
11
), pp.
6903
6911
.
12.
Jalilian
,
M.
,
Pourafshary
,
P.
,
Sedaee Sola
,
B.
, and
Kamari
,
M.
,
2017
, “
Optimization of Smart Water Chemical Composition for Carbonate Rocks Through Comparison of Active Cations Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062904
.
13.
Moeini
,
F.
,
Hemmati-Sarapardeh
,
A.
,
Ghazanfari
,
M. H.
,
Masihi
,
M.
, and
Ayatollahi
,
S.
,
2014
, “
Toward Mechanistic Understanding of Heavy Crude oil/Brine Interfacial Tension: The Roles of Salinity, Temperature and Pressure
,”
Fluid Phase Equilib.
,
375
(
15
), pp.
191
200
.
14.
Lashkarbolooki
,
M.
,
Ayatollahi
,
S.
, and
Riazi
,
M.
,
2014
, “
Effect of Salinity, Resin, and Asphaltene on the Surface Properties of Acidic Crude Oil/Smart Water/Rock System
,”
Energy Fuels
,
28
(
11
), pp.
6820
6829
.
15.
Ikeda
,
N.
,
Aratono
,
M.
, and
Motomura
,
K.
,
1992
, “
Thermodynamic Study on the Adsorption of Sodium Chloride at the Water/Hexane Interface
,”
J. Colloid Interface Sci.
,
149
(
1
), pp.
208
215
.
16.
Naeli
,
R. R. A.
, and
Honarvar
,
B.
, “
The Effect of Seawater on the Interfacial Tension: Smart Water Flooding
,”
Int. J. Adv. Biotechnol. Res.
,
56
(
7
), pp.
888
896
.
17.
Mahmoudvand
,
M.
,
Javadi
,
A.
, and
Pourafshary
,
P.
,
2019
, “
Brine Ions Impacts on Water-oil Dynamic Interfacial Properties Considering Asphaltene and Maltene Constituents
,”
Colloids Surf., A
,
579
(
19
), p.
123665
.
18.
Horváth-Szabó
,
G.
,
Masliyah
,
J. H.
,
Elliott
,
J. A.
,
Yarranton
,
H. W.
, and
Czarnecki
,
J.
,
2005
, “
Adsorption Isotherms of Associating Asphaltenes at oil/Water Interfaces Based on the Dependence of Interfacial Tension on Solvent Activity
,”
J. Colloid Interface Sci.
,
283
(
1
), pp.
5
17
.
19.
Rane
,
J. P.
,
Harbottle
,
D.
,
Pauchard
,
V.
,
Couzis
,
A.
, and
Banerjee
,
S.
,
2012
, “
Adsorption Kinetics of Asphaltenes at the Oil–Water Interface and Nanoaggregation in the Bulk
,”
Langmuir
,
28
(
26
), pp.
9986
9995
.
20.
Zarkar
,
S.
,
Pauchard
,
V.
,
Farooq
,
U.
,
Couzis
,
A.
, and
Banerjee
,
S.
,
2015
, “
Interfacial Properties of Asphaltenes at Toluene–Water Interfaces
,”
Langmuir
,
31
(
17
), pp.
4878
4886
.
21.
Hiemenz
,
P.
, and
Rajagopalan
,
R.
,
1997
,
Principles of Colloid and Surface Chemistry.
22.
Adamson
,
A.
, and
A. G.
,
1997
,
Physical Chemistry of Surfaces
,
Wiley-Interscience
,
New York
.
23.
Kumar
,
B.
,
2012
,
Effect of Salinity on the Interfacial Tension of Model and Crude oil Systems
,
University of Calgary
,
Calgary
.
24.
Hofmeister
,
F.
,
1888
, “
Zur Lehre von der Wirkung der Salze
,”
Archiv für experimentelle Pathologie und Pharmakologie
,
25
(
1
), pp.
1
30
.
25.
Kunz
,
W.
,
2010
, “
Specific ion Effects in Colloidal and Biological Systems
,”
Curr. Opin. Colloid Interface Sci.
,
15
(
1
), pp.
34
39
.
26.
Zhang
,
Y.
, and
Cremer
,
P. S.
,
2006
, “
Interactions Between Macromolecules and Ions: the Hofmeister Series
,”
Curr. Opin. Chem. Biol.
,
10
(
6
), pp.
658
663
.
27.
Austad
,
T.
,
2013
, “Water-Based EOR in Carbonates and Sandstones: New Chemical Understanding of the EOR Potential Using “Smart Water”,”
Enhanced Oil Recovery Field Case Studies
,
J. J.
Sheng
, ed.,
Gulf Professional Publishing
,
Boston, MA
, pp.
301
335
.
28.
Petrucci
,
R. H.
,
Harwood
,
W. S.
,
Herring
,
G. F.
, and
Maduram
,
J. D.
,
2007
,
General Chemistry: Principles and Modern Applications
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
29.
Buckley
,
J. S.
,
1996
, “Mechanisms and Consequences of Wettability Alteration by Crude Oils,”
Heriot-Watt University Petroleum Engineering
,
England
.
30.
Zhang
,
S.
,
Zhang
,
L.
,
Lu
,
X.
,
Shi
,
C.
,
Tang
,
T.
,
Wang
,
X.
,
Huang
,
Q.
, and
Zeng
,
H.
,
2018
, “
Adsorption Kinetics of Asphaltenes at oil/Water Interface: Effects of Concentration and Temperature
,”
Fuel
,
212
(
2
), pp.
387
394
.
31.
Skartlien
,
R.
,
Furtado
,
K.
,
Sollum
,
E.
,
Meakin
,
P.
, and
Kralova
,
I.
,
2011
, “
Lattice–Boltzmann Simulations of Dynamic Interfacial Tension due to Soluble Amphiphilic Surfactant
,”
Phys. A: Stat. Mech. Appl.
,
390
(
12
), pp.
2291
2302
.
32.
Sheu
,
E. Y.
,
2002
, “
Petroleum Asphaltene Properties, Characterization, and Issues
,”
Energy Fuels
,
16
(
1
), pp.
74
82
.
33.
Kakati
,
A.
, and
Sangwai
,
J. S.
,
2017
, “
Effect of Monovalent and Divalent Salts on the Interfacial Tension of Pure Hydrocarbon-Brine Systems Relevant for Low Salinity Water Flooding
,”
J. Pet. Sci. Eng.
,
157
(
11
), pp.
1106
1114
.
You do not currently have access to this content.