Abstract

The effects of water injection (WI) on combustion characteristics were investigated in an optically accessible light-duty engine retrofitted with a side-mounted water injector. The main objective was to study the effect of water injection on autoignition and subsequent combustion process in compression ignition (CI) engines. Numerical zero-dimensional simulations were first performed to separate the thermal from the kinetic effects of water on the ignition delay and maximum temperature reached by a reacting mixture. Then, experimental investigations were performed at different intake temperatures and levels of thermal stratification achieved via direct water injection. Combustion analysis was performed on cylinder pressure data to study the effect of water injection on the overall combustion process. Infrared (IR) imaging was performed to provide insight to how water injection and the resulting water distributions affect thermal stratification, autoignition, and combustion characteristics. A new method in quantifying the water distributions is suggested. The results show that the overall level of stratification is sensitive to water injection timing and pressure, where increased water injection pressures and advanced injection timings result in more homogenous distributions. Moreover, water injection was found to affect the location of ignition kernels and the local presence of water suppressed ignition. The level of water stratification was also observed to affect the combustion process, where more homogenous distributions lost their ability to influence ignition locations. Finally, the infrared images showed high levels of residual water left over from prior water-injected cycles, suggesting that hardware configurations and injection strategies must be optimized to avoid wall wetting for stable engine operation.

References

1.
Hopkinson
,
B.
,
1913
, “
A New Method of Cooling Gas-Engines
,”
Proc. Inst. Mech. Eng.
,
85
, pp.
679
715
.
2.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
,
Zhu
,
Y.
,
Tao
,
C.
,
Xu
,
T.
, and
Song
,
M.
,
2012
, “
The Engine Knock Analysis—An Overview
,”
Appl. Energy
,
92
, pp.
628
636
.
3.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
4.
Lawler
,
B.
,
Splitter
,
D.
,
Szybist
,
J.
, and
Kaul
,
B.
,
2017
, “
Thermally Stratified Compression Ignition: A New Advanced Low Temperature Combustion Mode With Load Flexibility
,”
Appl. Energy
,
189
, pp.
122
132
.
5.
Lawler
,
B.
,
Boldaji
,
M. R.
,
Sofianopoulos
,
A.
,
Mamalis
,
S.
,
2018
, “
Effects of Mass, Pressure, and Timing of Injection on the Efficiency and Emissions Characteristics of TSCI Combustion With Direct Water Injection
,”
SAE Technical Paper 2018-01-0178
,
SAE International
.
6.
Li
,
H.
,
Neill
,
W. S.
, and
Chippior
,
W. L.
,
2012
, “
An Experimental Investigation of HCCI Combustion Stability Using n-Heptane
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022204
.
7.
Çengel
,
Y. A.
,
2004
,
Thermodynamics: An Engineering Approach
, 9th ed.,
McGraw Hill
.
8.
Subramanian
,
K. A.
,
2011
, “
A Comparison of Water-Diesel Emulsion and Timed Injection of Water Into the Intake Manifold of a Diesel Engine for Simultaneous Control of NO and Smoke Emissions
,”
Energy Convers. Manage.
,
52
(
2
), pp.
849
857
.
9.
Paltrinieri
,
S.
,
Mortellaro
,
F.
,
Silvestri
,
N.
,
Rolando
,
L.
,
Medda
,
M.
, and
Corrigan
,
D.
,
2019
, “
Water Injection Contribution to Enabling Stoichiometric Air-to-Fuel Ratio Operation at Rated Power Conditions of a High-Performance DISI Single Cylinder Engine
,”
SAE Technical Paper 2019-24-0173
.
10.
Wirbeleit
,
F.
,
Enderle
,
C.
,
Lehner
,
W.
,
Raab
,
A.
, and
Binder
,
K.
,
1997
, “
Stratified Diesel Fuel-Water-Diesel Fuel Injection Combined With EGR-the Most Efficient in-Cylinder NOx and PM Reduction Technology
,”
SAE Technical Paper 972962
.
11.
Bedford
,
F.
,
Rutland
,
C.
,
Dittrich
,
P.
,
Raab
,
A.
, and
Wirbeleit
,
F.
,
2000
, “
Effects of Direct Water Injection on di Diesel Engine Combustion
,”
SAE Technical Paper 2000-01-2938
.
12.
Kohketsu
,
S.
,
Mori
,
K.
,
Sakai
,
K.
, and
Nakagawa
,
H.
,
1996
, “
Reduction of Exhaust Emission With New Water Injection System in a Diesel Engine
,”
SAE Technical Paper 960033
.
13.
Tanner
,
F. X.
,
Brunner
,
M.
, and
Weisser
,
G.
,
2001
, “
A Computational Investigation of Water Injection Strategies for Nitric Oxide Reduction in Large-Bore di Diesel Engines
,”
SAE Technical Paper 2001-01-1069
.
14.
Greeves
,
G.
,
Khan
,
I. M.
, and
Onion
,
G.
,
1977
, “
Effects of Water Introduction on Diesel Engine Combustion and Emissions
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
321
336
.
15.
Murayama
,
T.
,
Tsukahara
,
M.
,
Morishima
,
Y.
, and
Miyamoto
,
N.
,
1978
, “
Experimental Reduction of NOx, Smoke, and BSFC in a Diesel Engine Using Uniquely Produced Water (0–80%) to Fuel Emulsion
,”
SAE Technical Paper 780224
.
16.
Lif
,
A.
, and
Holmberg
,
K.
,
2006
, “
Water-in-diesel Emulsions and Related Systems
,”
Adv. Colloid Interface Sci.
,
123–126
(
SPEC. ISS.
), pp.
231
239
.
17.
Yahaya Khan
,
M.
,
Abdul Karim
,
Z. A.
,
Aziz
,
A. R. A.
, and
Tan
,
I. M.
,
2016
, “
A Case Study on the Influence of Selected Parameters on Microexplosion Behavior of Water in Biodiesel Emulsion Droplets
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022203
.
18.
Ochoterena
,
R.
,
Lif
,
A.
,
Nydén
,
M.
,
Andersson
,
S.
, and
Denbratt
,
I.
,
2010
, “
Optical Studies of Spray Development and Combustion of Water-in-Diesel Emulsion and Microemulsion Fuels
,”
Fuel
,
89
(
1
), pp.
122
132
.
19.
Nadeem
,
M.
,
Rangkuti
,
C.
,
Anuar
,
K.
,
Haq
,
M. R. U.
,
Tan
,
I. B.
, and
Shah
,
S. S.
,
2006
, “
Diesel Engine Performance and Emission Evaluation Using Emulsified Fuels Stabilized by Conventional and Gemini Surfactants
,”
Fuel
,
85
(
14–15
), pp.
2111
2119
.
20.
Kadota
,
T.
, and
Yamasaki
,
H.
,
2002
, “
Recent Advances in the Combustion of Water Fuel Emulsion
,”
Prog. Energy Combust. Sci.
,
28
(
5
), pp.
385
404
.
21.
Valero-Marco
,
J.
,
Lehrheuer
,
B.
,
López
,
J. J.
, and
Pischinger
,
S.
,
2018
, “
Potential of Water Direct Injection in a CAI/HCCI Gasoline Engine to Extend the Operating Range Towards Higher Loads
,”
Fuel
,
231
, pp.
317
327
.
22.
Kaneko
,
N.
,
Ando
,
H.
,
Ogawa
,
H.
, and
Miyamoto
,
N.
,
2002
, “
Expansion of the Operating Range With In-Cylinder Water Injection in a Premixed Charge Compression Ignition Engine
,”
SAE Technical Paper 2002-01-1743
.
23.
Blumreiter
,
J.
, and
Edwards
,
C.
,
2014
, “
Overcoming Pressure Waves to Achieve High Load HCCI Combustion
,”
SAE Technical Paper 2014-01-1269
.
24.
Kumar Maurya
,
R.
, and
Kumar Agarwal
,
A.
,
2014
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
.
25.
Fitton
,
J.
, and
Nates
,
R.
,
1996
, “
Knock Erosion in Spark-Ignition Engines
,”
SAE Technical Paper (412)
.
26.
Svrcek
,
M. N.
, and
Edwards
,
C. F.
,
2013
, “
Homogeneous Charge Compression Ignition With Nondilute Stoichiometric Methane-Air at Extreme Compression Ratios
,”
Int. J. Engine Res.
,
14
(
5
), pp.
479
495
.
27.
Rahimi Boldaji
,
M.
,
Sofianopoulos
,
A.
,
Mamalis
,
S.
, and
Lawler
,
B.
,
2019
, “
Computational Fluid Dynamics Investigations of the Effect of Water Injection Timing on Thermal Stratification and Heat Release in Thermally Stratified Compression Ignition Combustion
,”
Int. J. Engine Res.
,
20
(
5
), pp.
555
569
.
28.
Hoppe
,
F.
,
Thewes
,
M.
,
Baumgarten
,
H.
, and
Dohmen
,
J.
,
2016
, “
Water Injection for Gasoline Engines: Potentials, Challenges, and Solutions
,”
Int. J. Engine Res.
,
17
(
1
), pp.
86
96
.
29.
Netzer
,
C.
,
Franken
,
T.
,
Seidel
,
L.
,
Lehtiniemi
,
H.
, and
Mauss
,
F.
,
2018
, “
Numerical Analysis of the Impact of Water Injection on Combustion and Thermodynamics in a Gasoline Engine Using Detailed Chemistry
,”
SAE Int. J. Engines
,
11
(
6
), pp.
1151
1166
.
30.
Bozza
,
F.
,
De Bellis
,
V.
,
Giannattasio
,
P.
,
Teodosio
,
L.
, and
Marchitto
,
L.
,
2017
, “
Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and Over a WLTP Driving Cycle
,”
SAE Int. J. Engines
,
10
(
4
), pp.
2141
2153
.
31.
Jansons
,
M.
,
Lin
,
S.
, and
Rhee
,
K. T.
,
2008
, “
Infrared Spectral Analysis of Engine Preflame Emission
,”
Int. J. Engine Res.
,
9
(
3
), pp.
215
237
.
32.
Campbell
,
S.
,
Lin
,
S.
,
Jansons
,
M.
, and
Rhee
,
K. T.
,
1999
, “
In-Cylinder Liquid Fuel Layers, Cause of Unburned Hydrocarbon and Deposit Formation in SI Engines?
,”
International Fuels & Lubricants Meeting & Exposition
,
SAE International
.
33.
Luo
,
X.
,
Yu
,
X.
, and
Jansons
,
M.
,
2015
, “
Simultaneous In-Cylinder Surface Temperature Measurements With Thermocouple, Laser-Induced Phosphorescence, and Dual Wavelength Infrared Diagnostic Techniques
in
an Optical Engine
,”
SAE Technical Paper 2015-01-1658
.
34.
McManus
,
I. C.
,
Stöver
,
K.
, and
Kim
,
D.
,
2011
, “
Arnheim’s Gestalt Theory of Visual Balance: Examining the Compositional Structure of Art Photographs and Abstract Images
,”
i-Perception
,
2
(
6
), pp.
615
647
.
35.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(
1
), pp.
149
177
.
36.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
(
3
), pp.
253
280
.
37.
Zhang
,
P.
,
Ji
,
W.
,
He
,
T.
,
He
,
X.
,
Wang
,
Z.
,
Yang
,
B.
, and
Law
,
C. K.
,
2016
, “
First-Stage Ignition Delay in the Negative Temperature Coefficient Behavior: Experiment and Simulation
,”
Combust. Flame
,
167
, pp.
14
23
.
38.
Yu
,
L.
,
Mao
,
Y.
,
Qiu
,
Y.
,
Wang
,
S.
,
Li
,
H.
,
Tao
,
W.
,
Qian
,
Y.
, and
Lu
,
X.
,
2019
, “
Experimental and Modeling Study of the Autoignition Characteristics of Commercial Diesel Under Engine-Relevant Conditions
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4805
4812
.
39.
Ciezki
,
H. K.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.
40.
Oldenhof
,
E.
,
Tummers
,
M. J.
,
van Veen
,
E. H.
, and
Roekaerts
,
D. J. E. M.
,
2010
, “
Ignition Kernel Formation and Lift-Off Behaviour of Jet-in-Hot-Coflow Flames
,”
Combust. Flame
,
157
(
6
), pp.
1167
1178
.
You do not currently have access to this content.