Abstract

Worldwide research and development programs aim to reduce harmful emissions from transportation vehicles. Soft sensors have shown great potentials to reduce cost and improve onboard diagnosis for vehicle emission control. In this work, two sets of soft sensors are proposed to predict the emissions and exhaust heat flux of a gasoline engine. Extensive steady-state measurement points over the entire engine operating conditions are collected for model training and validation, and the locally linear model tree learning method is adopted. The CO, NOx, hydrocarbon, exhaust temperature, and exhaust heat flux are estimated by the soft sensors under steady-state conditions. Training of CO, exhaust temperature, and exhaust heat flux models has achieved high model accuracy over the entire engine map. Local models are developed for NOx and HC emissions to improve model performance at different engine operating speed/load conditions, especially in the low emission zone. Model validation has shown correlation coefficients ranging 0.983 ∼ 0.999

References

1.
Guzzella
,
L.
, and
Amstutz
,
A.
,
1998
, “
Control of Diesel Engines
,”
IEEE Control Syst.
,
18
(
5
), pp.
53
71
.
2.
Zhu
,
G.
,
Wang
,
J.
,
Sun
,
Z.
, and
Chen
,
X.
,
2015
, “
Tutorial of Model-Based Powertrain and Aftertreatment System Control Design and Implementation
,”
IEEE American Control Conference
,
Chicago, IL
,
July 1–3
, pp.
2093
2110
.
3.
Kiencke
,
U.
, and
Nielsen
,
L.
,
2005
,
Automotive Control Systems—for Engine, Driveline, and Vehicle
, 2nd ed.,
Springer-Verlag
,
Berlin Heidelberg
.
4.
Del Re
,
L.
,
Allgower
,
F.
,
Glielmo
,
L.
,
Guardiola
,
C.
, and
Kolmanovsky
,
I.
,
2010
,
Automotive Model Predictive Control—Models, Methods, and Applications
,
Springer-Verlag
,
London
.
5.
Tan
,
Q.
,
2018
, “
Model-Guided Data-Driven Optimization and Control for Internal Combustion Engine Systems
,”
Ph.D. dissertation
,
University of Windsor
,
Canada
.
6.
Martinez-Morales
,
J. D.
,
Palacios
,
E.
, and
Velazquez Carrillo
,
G. A.
,
2012
, “
Modeling of Internal Combustion Engine Emissions by LOLIMOT Algorithm
,”
The 2012 Ibero-American Conference on Electronics Engineering and Computer Science
,
Guadalajara, Mexico
,
May, 2012
, pp.
251
258
.
7.
Tan
,
Q.
,
Divekar
,
P. S.
,
Tan
,
Y.
,
Chen
,
X.
, and
Zheng
,
M.
,
2020
, “
Pressure Sensor Data-Driven Optimization of Combustion Phase in a Diesel Engine
,”
IEEE ASME Trans. Mechatron
,
25
(
2
), pp.
694
704
.
8.
Arsie
,
I.
,
Cricchio
,
A.
,
De Cesare
,
M.
,
Lazzarini
,
F.
,
Pianese
,
C.
, and
Sorrentino
,
M.
,
2017
, “
Neural Network Models for Virtual Sensing of NOx Emissions in Automotive Diesel Engines With Least Square-Based Adaptation
,”
Control Eng. Pract.
,
61
, pp.
11
20
.
9.
Ishizuka
,
S.
,
Kajiwara
,
I.
,
Sato
,
J.
, and
Hanamura
,
Y.
,
2016
, “
Adaptive NOx Soft Sensor for Aftertreatment of Diesel Engines
,”
Proceedings of the 3rd International Conference on Control, Mechatronics and Automation, (ICCMA 2015)
,
Barcelona, Spain
,
Feb. 17
, p.
04002
.
10.
Shakil
,
M.
,
Elshafei
,
M.
,
Habib
,
M. A.
, and
Maleki
,
F. A.
,
2009
, “
Soft Sensor for NOx and O2 Using Dynamic Neural Networks
,”
Comput. Electr. Eng.
,
35
(
4
), pp.
578
586
.
11.
Ishizuka
,
S.
,
Kajiwara
,
I.
,
Sato
,
J.
, and
Hanamura
,
Y.
,
2016
, “
A New Approach for NOx Soft Sensors for the Aftertreatment of Diesel Engines
,”
J. Phys. Conf. Ser.
,
744
(
1
), p.
012207
.
12.
Gholipour
,
A.
,
Lucas
,
C.
,
Araabi
,
B. N.
,
Mirmomeni
,
M.
, and
Shafiee
,
M.
,
2017
, “
Extracting the Main Patterns of Natural Time Series Long-Term Neurofuzzy Prediction
,”
Neural. Comput. Appl.
,
16
(
4–5
), pp.
383
393
.
13.
Zhai
,
Y.
,
Yu
,
D.
,
Qian
,
K.
,
Lee
,
S.
, and
Theera-Umpon
,
N.
,
2017
, “
A Soft Sensor-Based Fault-Tolerant Control on the Air Fuel Ratio of Spark-Ignition Engines
,”
Energies
,
10
(
1
), p.
131
.
14.
Turkson
,
R. F.
,
Yan
,
F.
,
Ali
,
M.
, and
Hu
,
J.
,
2016
, “
Artificial Neural Network Applications in the Calibration of Spark-Ignition Engines: An Overview
,”
Int. J. Eng. Sci. Technol.
,
19
(
3
), pp.
1346
1359
.
15.
Grimaldi
,
C.
, and
Mariani
,
F.
,
2001
, “
OBD Engine Fault Detection Using a Neural Approach
,”
SAE Technical Paper Series, Paper No. 2001-01-0559
.
16.
Ammann
,
M.
,
Geering
,
H. P.
,
Onder
,
C. H.
,
Roduner
,
C. A.
, and
Shafai
,
E.
,
2000
, “
Adaptive Control of a Three-Way Catalytic Converter
,”
Proceedings of the 2000 American Control Conference
,
Chicago, IL
,
June 28–30
, pp.
1561
1566
.
17.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engines Fundamentals
,
Mc Graw Hill
,
New York
.
18.
Fiengo
,
G.
,
Santini
,
S.
, and
Glielmo
,
L.
,
2008
, “
Emission Reduction During TWC Warm-Up: Control Synthesis and Hardware-in-the-Loop Verification
,”
Int. J. Model Identif. Control
,
3
(
3
), pp.
233
246
.
19.
Sayin
,
C.
,
Ertunc
,
H. M.
,
Hosoz
,
M.
,
Kilicaslan
,
I.
, and
Canakci
,
M.
,
2007
, “
Performance and Exhaust Emissions of a Gasoline Engine Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
46
54
.
20.
De Cesare
,
M.
, and
Covassin
,
F.
,
2011
, “
Neural Network Based Models for Virtual NOx Sensing of Compression Ignition Engines
,”
SAE Technical Paper, Paper No. 2011-24-0157
.
21.
Atkinson
,
C.
,
Long
,
T.
, and
Hanzevack
,
E.
,
1998
, “
Virtual Sensing: A Neural Network-Based Intelligent Performance and Emissions Prediction System for On-Board Diagnostics and Engine Control
,”
SAE Technical Paper, Paper No. 980516
.
22.
Schoukens
,
J.
, and
Ljung
,
L.
,
2019
, “
Nonlinear System Identification: A User-Oriented Road Map
,”
IEEE Control Syst.
,
39
(
6
), pp.
28
99
.
23.
Isermann
,
R.
,
2014
,
Engine Modeling and Control—Modeling and Electronic Management of Internal Combustion Engines
,
Springer Heidelberg
,
New York
.
24.
Jolliffe
,
I. T.
,
2002
,
Principle Component Analysis
,
Springer-Verlag
,
New York
.
25.
Sahin
,
F.
,
2015
, “
Effects of Engine Parameters on Ionization Current and Modeling of Excess Air Coefficient by Artificial Neural Network
,”
Appl. Therm. Eng.
,
90
, pp.
94
101
.
26.
Esonye
,
C.
,
Onukwuli
,
O. D.
,
Ofoefule
,
A. U.
, and
Ogah
,
E. O.
,
2019
, “
Multi-input Multi-output ANN and Nelder-Mead’s Simplex Based Modeling of Engine Performance and Combustion Emission Characteristics of Biodiesel-Diesel Blend in CI Diesel Engine
,”
Appl. Therm. Eng.
,
151
, pp.
100
114
.
27.
Mariani
,
F.
,
Grimaldi
,
C. N.
, and
Battistoni
,
M.
,
2014
, “
Diesel Engine NOx Emissions Control: An Advanced Method for the O2 Evaluation in the Intake Low
,”
Appl. Energy
,
113
, pp.
576
588
.
28.
Hand
,
D. J.
, and
Vinciotti
,
V.
,
2003
, “
Local Versus Global Models for Classification Problems: Fitting Models Where It Matters
,”
Am. Stat.
,
57
(
2
), pp.
124
131
.
You do not currently have access to this content.