Abstract

Alternative fuels, such as biodiesel, can be used in place of fossil fuels, although they have a greater viscosity and a longer igniting delay. To compensate for these limitations, several additives are added to biodiesel. The cetane improver di-tert butyl peroxide (DTBP) was investigated as an additive in this work. DTBP was shown to influence the combustion and emission properties of waste cooking oil biodiesel-diesel blends. The multi-objective response surface technique (MORSM) with Box-Behnken design was used to decrease the number of trials to conserve precious resources such as human effort, time, and money. Theil's uncertainty for the model's predictive capabilities (Theil's U2) was less than 0.1189, demonstrating its robustness. Nash-Sutcliffe efficiency was excellent (0.9885–0.9995), with a mean absolute percentage error of less than 1.32%. The engine operating parameters that were optimized were 71.64% engine load, 4964 ppm DTBP additive, and 24.98-deg advance ignition timing. The MORSM-based proposed technique's reliability and robustness validate the usage of DTBP with biodiesel blends, model prediction, and optimization.

References

1.
Fuso Nerini
,
F.
,
Tomei
,
J.
,
To
,
L. S.
,
Bisaga
,
I.
,
Parikh
,
P.
,
Black
,
M.
,
Borrion
,
A.
,
Spataru
,
C.
,
Castán Broto
,
V.
,
Anandarajah
,
G.
,
Milligan
,
B.
, and
Mulugetta
,
Y.
,
2018
, “
Mapping Synergies and Trade-Offs Between Energy and the Sustainable Development Goals
,”
Nat. Energy
,
3
, pp.
10
15
.
2.
Salvia
,
A. L.
,
Leal Filho
,
W.
,
Brandli
,
L. L.
, and
Griebeler
,
J. S.
,
2019
, “
Assessing Research Trends Related to Sustainable Development Goals: Local and Global Issues
,”
J. Cleaner Prod.
,
208
, pp.
841
849
.
3.
Mahmudul
,
H. M.
,
Hagos
,
F. Y.
,
Mamat
,
R.
,
Adam
,
A. A.
,
Ishak
,
W. F. W.
, and
Alenezi
,
R.
,
2017
, “
Production, Characterization and Performance of Biodiesel as an Alternative Fuel in Diesel Engines—A Review
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
497
509
.
4.
Lee
,
C. C.
,
Tran
,
M. V.
,
Tan
,
B. T.
,
Scribano
,
G.
, and
Chong
,
C. T.
,
2021
, “
A Comprehensive Review on the Effects of Additives on Fundamental Combustion Characteristics and Pollutant Formation of Biodiesel and Ethanol
,”
Fuel
,
288
.
5.
Musthafa
,
M. M.
,
Kumar
,
T. A.
,
Mohanraj
,
T.
, and
Chandramouli
,
R.
,
2018
, “
A Comparative Study on Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled by Biodiesel Blends with and Without an Additive
,”
Fuel
,
225
, pp.
343
348
.
6.
Devarajan
,
Y.
,
Beemkumar
,
N.
,
Ganesan
,
S.
, and
Arunkumar
,
T.
,
2020
, “
An Experimental Study on the Influence of an Oxygenated Additive in Diesel Engine Fuelled with Neat Papaya Seed Biodiesel/Diesel Blends
,”
Fuel
,
268
, p.
117254
.
7.
Atmanli
,
A.
,
2016
, “
Effects of a Cetane Improver on Fuel Properties and Engine Characteristics of a Diesel Engine Fueled with the Blends of Diesel, Hazelnut Oil and Higher Carbon Alcohol
,”
Fuel
,
172
, pp.
209
217
.
8.
Mishra
,
S.
,
Chauhan
,
A.
, and
Mishra
,
K. B.
,
2020
, “
Role of Binary and Ternary Blends of WCO Biodiesel on Emission Reduction in Diesel Engine
,”
Fuel
,
262
, p.
116604
.
9.
Imdadul
,
H. K.
,
Rashed
,
M. M.
,
Shahin
,
M. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Kamruzzaman
,
M.
, and
Rashedul
,
H. K.
,
2017
, “
Quality Improvement of Biodiesel Blends Using Different Promising Fuel Additives to Reduce Fuel Consumption and NO Emission From CI Engine
,”
Energy Convers. Manage.
,
138
, pp.
327
337
.
10.
Bhatti
,
S. S.
,
Verma
,
S.
, and
Tyagi
,
S. K.
,
2019
, “
Energy and Exergy Based Performance Evaluation of Variable Compression Ratio Spark Ignition Engine Based on Experimental Work
,”
Therm. Sci. Eng. Prog.
,
9
, pp.
332
339
.
11.
Nabi
,
M. N.
, and
Rasul
,
M. G.
,
2018
, “
Influence of Second Generation Biodiesel on Engine Performance, Emissions, Energy and Exergy Parameters
,”
Energy Convers. Manag.
,
169
, pp.
326
333
.
12.
Singh
,
G.
, and
Das
,
R.
,
2021
, “
Experimental Study on a New Small-Scale Absorption System: Response Surface and Inverse Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092103
.
13.
Uslu
,
S.
, and
Aydın
,
M.
,
2020
, “
Effect of Operating Parameters on Performance and Emissions of a Diesel Engine Fueled with Ternary Blends of Palm Oil Biodiesel/Diethyl Ether/Diesel by Taguchi Method
,”
Fuel
,
275
, p.
117978
.
14.
Gupta
,
M.
,
Singh
,
V.
,
Kumar
,
R.
, and
Said
,
Z.
,
2017
, “
A Review on Thermophysical Properties of Nanofluids and Heat Transfer Applications
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
638
670
.
15.
Singh
,
K.
, and
Das
,
R.
,
2017
, “
Simultaneous Optimization of Performance Parameters and Energy Consumption in Induced Draft Cooling Towers
,”
Chem. Eng. Res. Des.
,
123
, pp.
1
13
.
16.
Singh
,
A.
, and
Das
,
R.
,
2021
, “
A Novel Combined Power and Cooling Cycle Design and a Modified Conditional Exergy Destruction Approach
,”
Energy Convers. Manage.
,
233
, p.
113943
.
17.
Sharma
,
P.
,
2021
, “
Artificial Intelligence-Based Model Prediction of Biodiesel-Fueled Engine Performance and Emission Characteristics: A Comparative Evaluation of Gene Expression Programming and Artificial Neural Network
,”
Heat Transfer.
,
50
(
6
), pp.
5563
5587
.
18.
Sharma
,
P.
,
2020
, “
Gene Expression Programming-Based Model Prediction of Performance and Emission Characteristics of a Diesel Engine Fueled with Linseed Oil Biodiesel/Diesel Blends: An Artificial Intelligence Approach
,”
Energy Sources, Part A.
19.
Atmanli
,
A.
,
Yüksel
,
B.
,
Ileri
,
E.
, and
Deniz Karaoglan
,
A.
,
2015
, “
Response Surface Methodology Based Optimization of Diesel-n-Butanol-Cotton Oil Ternary Blend Ratios to Improve Engine Performance and Exhaust Emission Characteristics
,”
Energy Convers. Manage.
,
90
, pp.
383
394
.
20.
Simsek
,
S.
, and
Uslu
,
S.
,
2020
, “
Determination of a Diesel Engine Operating Parameters Powered with Canola, Safflower and Waste Vegetable Oil Based Biodiesel Combination Using Response Surface Methodology (RSM)
,”
Fuel
,
270
, p.
117496
.
21.
Murugapoopathi
,
S.
, and
Vasudevan
,
D.
,
2021
, “
Experimental and Numerical Findings on VCR Engine Performance Analysis on High FFA RSO Biodiesel as Fuel Using RSM Approach
,”
Heat Mass Transfer
,
57
(
3
), pp.
495
513
.
22.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
.
23.
Kashyap
,
D.
,
Das
,
S.
, and
Kalita
,
P.
,
2021
, “
Exploring the Efficiency and Pollutant Emission of a Dual Fuel CI Engine Using Biodiesel and Producer Gas: An Optimization Approach Using Response Surface Methodology
,”
Sci. Total Environ.
,
773
, p.
145633
.
24.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanli
,
A.
,
Deniz Karaoglan
,
A.
,
Okkan
,
U.
, and
Sureyya Kocak
,
M.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Hazelnut Oil Methyl Ester: The Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
.
25.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabhu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2021
, “
Multi-Objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
.
26.
Usta
,
N.
,
Öztürk
,
E.
,
Can
,
Ö
,
Conkur
,
E. S.
,
Nas
,
S.
,
Çon
,
A. H.
,
Can
,
, and
Topcu
,
M.
,
2005
, “
Combustion of BioDiesel Fuel Produced From Hazelnut Soapstock/Waste Sunflower Oil Mixture in a Diesel Engine
,”
Energy Convers. Manage.
,
46
(
5
), pp.
741
755
.
27.
Subramani
,
S.
,
Govindasamy
,
R.
, and
Rao
,
G. L. N.
,
2020
, “
Predictive Correlations for NOx and Smoke Emission of DI CI Engine Fuelled with Diesel-Biodiesel-Higher Alcohol Blends-Response Surface Methodology Approach
,”
Fuel
,
269
, p.
117304
.
28.
Billa
,
K. K.
,
Sastry
,
G. R. K.
, and
Deb
,
M.
,
2020
, “
Characterization of Emission-Performance Paradigm of a DI-CI Engine Using Artificial Intelligent Based Multi Objective Response Surface Methodology Model Fueled with Diesel-Biodiesel Blends
,”
Energy Sources, Part A.
29.
Simsek
,
S.
, and
Uslu
,
S.
,
2020
, “
Investigation of the Effects of Biodiesel/2-Ethylhexyl Nitrate (EHN) Fuel Blends on Diesel Engine Performance and Emissions by Response Surface Methodology (RSM)
,”
Fuel
,
275
, p.
118005
.
30.
Elkelawy
,
M.
,
Bastawissi
,
H. A. E.
,
Esmaeil
,
K. K.
,
Radwan
,
A. M.
,
Panchal
,
H.
,
Sadasivuni
,
K. K.
,
Suresh
,
M.
, and
Israr
,
M.
,
2020
, “
Maximization of Biodiesel Production From Sunflower and Soybean Oils and Prediction of Diesel Engine Performance and Emission Characteristics Through Response Surface Methodology
,”
Fuel
,
266
.
31.
Bhowmik
,
S.
,
Paul
,
A.
,
Panua
,
R.
,
Ghosh
,
S. K.
, and
Debroy
,
D.
,
2019
, “
Artificial Intelligence Based Gene Expression Programming (GEP) Model Prediction of Diesel Engine Performances and Exhaust Emissions Under Diesosenol Fuel Strategies
,”
Fuel
,
235
, pp.
317
325
.
32.
Kakati
,
D.
,
Roy
,
S.
, and
Banerjee
,
R.
,
2021
, “
Development and Validation of an Artificial Intelligence Platform for Characterization of the Exergy-Emission-Stability Profiles of the PPCI-RCCI Regimes in a Diesel-Methanol Operation Under Varying Injection Phasing Strategies: A Gene Expression Programming Approach
,”
Fuel
,
299
, p.
120864
.
33.
Dey
,
S.
,
Reang
,
N. M.
,
Deb
,
M.
, and
Das
,
P. K.
,
2020
, “
Study on Performance-Emission Trade-Off and Multi-Objective Optimization of Diesel-Ethanol-Palm Biodiesel in a Single Cylinder CI Engine: A Taguchi-Fuzzy Approach
,”
Energy Sources, Part A.
34.
Mohammadian
,
A.
,
Chehrmonavari
,
H.
,
Kakaee
,
A.
, and
Paykani
,
A.
,
2020
, “
Effect of Injection Strategies on a Single-Fuel RCCI Combustion Fueled with Isobutanol/Isobutanol + DTBP Blends
,”
Fuel
,
278
, p.
118219
.
35.
Devarajan
,
Y.
,
Nagappan
,
B.
,
Mageshwaran
,
G.
,
Sunil Kumar
,
M.
, and
Durairaj
,
R. B.
,
2020
, “
Feasibility Study of Employing Diverse Antioxidants as an Additive in Research Diesel Engine Running with Diesel-Biodiesel Blends
,”
Fuel
,
277
.
36.
Gumus
,
M.
,
2010
, “
A Comprehensive Experimental Investigation of Combustion and Heat Release Characteristics of a Biodiesel (Hazelnut Kernel Oil Methyl Ester) Fueled Direct Injection Compression Ignition Engine
,”
Fuel.
,
89
(
10
), pp.
2802
2814
.
37.
Edara
,
G.
,
Satyanarayana Murthy
,
Y. V. V.
,
Nayar
,
J.
,
Ramesh
,
M.
, and
Srinivas
,
P.
,
2019
, “
Combustion Analysis of Modified Light Duty Diesel Engine Under High Pressure Split Injections with Cooled EGR
,”
Eng. Sci. Technol. Int. J.
,
22
(
3
), pp.
966
978
.
You do not currently have access to this content.