Abstract

Thermal power plants play a significant role in generating power, electricity, and energy consumption in the world, especially in developing countries. Therefore, the energy analysis of these power plants is very useful to increase the efficiency of systems and reduce energy consumption. One of the components of power plants that play a great role in energy consumption and recovery is the feedwater heater. In this study, a design method-based pinch technology for feedwater heaters of a coal power plant is presented. This method is used to reduce the irreversibility of heat transfer in feedwater heaters in this power plant. This study is performed on six feedwater heaters, which are similar in pairs. The results of this method show that this method is feasible for this system, and the results also show that the implementation of this method with a Pinch range of 10 °C indicated a deficit hot utility of about 48.54 MW. Also, the amount of power plant efficiency improvement is 12.12%, and according to the Pinch method, the energy price of the power plant can be reduced by about 125,489 $/year.

References

1.
Oyedepo
,
S. O.
,
Fakeye
,
B. A.
,
Mabinuori
,
B.
,
Babalola
,
P. O.
,
Leramo
,
R. O.
,
Kilanko
,
O.
, and
Oyebanji
,
J. A.
,
2020
, “
Thermodynamics Analysis and Performance Optimization of a Reheat–Regenerative Steam Turbine Power Plant With Feedwater Heaters
,”
Fuel
,
280
, p.
118577
.
2.
Söylemez
,
M. S.
,
2011
, “
On the Thermo Economical Optimization of Feedwater Heaters in Thermal Power Plants
,”
Smart Grid Renewable Energy
,
2
(
4
), pp.
410
416
.
3.
Ozalp
,
N.
, and
Hyman
,
B.
,
2007
, “
Allocation of Energy Inputs Among the End-Uses in the US Petroleum and Coal Products Industry
,”
Energy
,
32
(
8
), pp.
1460
1470
.
4.
Linnhoff
,
B.
, and
Flower
,
J. R.
,
1978
, “
Synthesis of Heat Exchanger Networks: I. Systematic Generation of Energy Optimal Networks
,”
AIChE J.
,
24
(
4
), pp.
633
642
.
5.
Valiani
,
S.
,
Tahouni
,
N.
, and
Panjeshahi
,
M. H.
,
2017
, “
Optimization of Pre-Combustion Capture for Thermal Power Plants Using Pinch Analysis
,”
Energy
,
119
, pp.
950
960
.
6.
Ataei
,
A.
, and
Yoo
,
C.
,
2010
, “
Combined Pinch and Exergy Analysis for Energy Efficiency Optimization in a Steam Power Plant
,”
Phys. Sci. Int. J.
,
5
(
7
), pp.
1110
1123
.
7.
Arriola-Medellín
,
A.
,
Manzanares-Papayanopoulos
,
E.
, and
Romo-Millares
,
C.
,
2014
, “
Diagnosis and Redesign of Power Plants Using Combined Pinch and Exergy Analysis
,”
Energy
,
72
, pp.
643
651
.
8.
Sojitra
,
R.
, and
Dwivedi
,
S.
,
2016
, “
Energy Optimisation of Upstream Separation and Stabilisation Plant Using Pinch Technology
,”
IJSRES
,
3
, pp.
51
55
.
9.
Jin
,
Y.
,
Gao
,
N.
, and
Wang
,
T.
,
2020
, “
Influence of Heat Exchanger Pinch Point on the Control Strategy of Organic Rankine Cycle (ORC)
,”
Energy
,
207
, p.
118196
.
10.
Deng
,
J.
,
Cao
,
Z.
,
Zhang
,
D.
, and
Feng
,
X.
,
2017
, “
Integration of Energy Recovery Network Including Recycling Residual Pressure Energy With Pinch Technology
,”
Chin. J. Chem. Eng.
,
25
(
4
), pp.
453
462
.
11.
Asl
,
S. S.
,
Tahouni
,
N.
, and
Panjeshahi
,
M. H.
,
2018
, “
Energy Benchmarking of Thermal Power Plants Using Pinch Analysis
,”
J. Cleaner Prod.
,
171
, pp.
1342
1352
.
12.
Harkin
,
T.
,
Hoadley
,
A.
, and
Hooper
,
B.
,
2010
, “
Reducing the Energy Penalty of CO2 Capture and Compression Using Pinch Analysis
,”
J. Cleaner Prod.
,
18
(
9
), pp.
857
866
.
13.
Safder
,
U.
,
Ifaei
,
P.
, and
Yoo
,
C.
,
2020
, “
A Novel Approach for Optimal Energy Recovery Using Pressure Retarded Osmosis Technology: Chemical Exergy Pinch Analysis—Case Study in a Sugar Mill Plant
,”
Energy Convers. Manage.
,
213
, p.
112810
.
14.
Rozali
,
N. E. M.
,
Ho
,
W. S.
,
Alwi
,
S. R. W.
,
Manan
,
Z. A.
,
Klemeš
,
J. J.
, and
Cheong
,
J. S.
,
2019
, “
Probability-Power Pinch Analysis Targeting Approach for Diesel/Biodiesel Plant Integration Into Hybrid Power Systems
,”
Energy
,
187
, p.
115913
.
15.
Han
,
T.
,
Zhu
,
C.
, and
Che
,
D.
,
2018
, “
Optimization of Waste Heat Recovery Power Generation System for Cement Plant by Combining Pinch and Exergy Analysis Methods
,”
Appl. Therm. Eng.
,
140
, pp.
334
340
.
16.
Ghorbani
,
B.
,
Ebrahimi
,
A.
,
Rooholamini
,
S.
, and
Ziabasharhagh
,
M.
,
2020
, “
Pinch and Exergy Evaluation of Kalina/Rankine/Gas/Steam Combined Power Cycles for Tri-Generation of Power Cooling and Hot Water Using Liquefied Natural Gas Regasification
,”
Energy Convers. Manage.
,
223
, p.
113328
.
17.
Ghorbani
,
B.
,
Salehi
,
G.
,
Ebrahimi
,
A.
, and
Taghavi
,
M.
,
2021
, “
Energy, Exergy and Pinch Analyses of a Novel Energy Storage Structure Using Post-Combustion CO2 Separation Unit, Dual Pressure Linde-Hampson Liquefaction System, Two-Stage Organic Rankine Cycle and Geothermal Energy
,”
Energy
, p.
121051
.
18.
Ghorbani
,
B.
,
Ebrahimi
,
A.
, and
Moradi
,
M.
,
2021
, “
Exergy, Pinch, and Reliability Analyses of an Innovative Hybrid System Consisting of Solar Flat Plate Collectors, Rankine/CO2/Kalina Power Cycles, and Multi-Effect Desalination System
,”
Process Saf. Environ. Prot.
,
156
, pp.
160
183
.
19.
Su
,
W.
,
Ye
,
Y.
,
Zhang
,
C.
,
Baležentis
,
T.
, and
Štreimikienė
,
D.
,
2020
, “
Sustainable Energy Development in the Major Power-Generating Countries of the European Union: The Pinch Analysis
,”
J. Clean. Prod.
,
256
, p.
120696
.
20.
Saharkhiz
,
M. H. M.
,
Ghorbani
,
B.
,
Ebrahimi
,
A.
, and
Rooholamini
,
S.
,
2021
, “
Exergy, Economic and Pinch Analyses of a Novel Integrated Structure for Cryogenic Energy Storage and Freshwater Production Using Ejector Refrigeration Cycle, Desalination Unit, and Natural Gas Combustion Plant
,”
J. Energy Storage
,
44
(
Part B
), p.
103471
.
21.
Zhao
,
Y. J.
,
Zhang
,
Y. K.
,
Cui
,
Y.
,
Duan
,
Y. Y.
,
Huang
,
Y.
,
Wei
,
G. Q.
, and
Nimmo
,
W.
,
2022
, “
Pinch Combined With Exergy Analysis for Heat Exchange Network and Techno-Economic Evaluation of Coal Chemical Looping Combustion Power Plant With CO2 Capture
,”
Energy
,
238
(
Part A
), p.
121720
.
22.
Yong
,
W. N.
,
Liew
,
P. Y.
,
Woon
,
K. S.
,
Alwi
,
S. R. W.
, and
Klemeš
,
J. J.
,
2021
, “
A Pinch-Based Multi-Energy Targeting Framework for Combined Chilling Heating Power Microgrid of Urban-Industrial Symbiosis
,”
Renewable Sustainable Energy Rev.
,
150
, p.
111482
.
23.
Jankowski
,
M.
,
Borsukiewicz
,
A.
,
Szopik-Depczyńska
,
K.
, and
Ioppolo
,
G.
,
2019
, “
Determination of an Optimal Pinch Point Temperature Difference Interval in ORC Power Plant Using Multi-Objective Approach
,”
J. Cleaner Prod.
,
217
, pp.
798
807
.
24.
Ebrahimi
,
A.
,
Ghorbani
,
B.
, and
Taghavi
,
M.
,
2021
, “
Pinch and Exergy Evaluation of a Liquid Nitrogen Cryogenic Energy Storage Structure Using Air Separation Unit, Liquefaction Hybrid Process, and Kalina Power Cycle
,”
J. Cleaner Prod.
,
305
, p.
127226
.
25.
Ebrahimi
,
A.
,
Ghorbani
,
B.
,
Skandarzadeh
,
F.
, and
Ziabasharhagh
,
M.
,
2021
, “
Introducing a Novel Liquid Air Cryogenic Energy Storage System Using Phase Change Material, Solar Parabolic Trough Collectors, and Kalina Power Cycle (Process Integration, Pinch, and Exergy Analyses)
,”
Energy Convers. Manage.
,
228
, p.
113653
.
26.
Dehghani
,
M. J.
, and
Yoo
,
C.
,
2020
, “
Three-Step Modification and Optimization of Kalina Power-Cooling Cogeneration Based on Energy, Pinch, and Economics Analyses
,”
Energy
,
205
, p.
118069
.
27.
Wang
,
B.
,
Klemeš
,
J. J.
,
Gai
,
L.
,
Varbanov
,
P. S.
, and
Liang
,
Y.
,
2021
, “
A Heat and Power Pinch for Process Integration Targeting in Hybrid Energy Systems
,”
J. Environ. Manage.
,
287
, p.
112305
.
28.
Farhad
,
S.
,
Saffar-Avval
,
M.
, and
Younessi-Sinaki
,
M.
,
2008
, “
Efficient Design of Feedwater Heaters Network in Steam Power Plants Using Pinch Technology and Exergy Analysis
,”
Int. J. Energy Res.
,
32
(
1
), pp.
1
11
.
29.
Espatolero
,
S.
,
Romeo
,
L. M.
, and
Cortés
,
C.
,
2014
, “
Efficiency Improvement Strategies for the Feedwater Heaters Network Designing in Supercritical Coal-Fired Power Plants
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
449
460
.
30.
Hoseinzadeh
,
S.
, and
Stephan Heyns
,
P.
,
2020
, “
Advanced Energy, Exergy, and Environmental (3E) Analyses and Optimization of a Coal-Fired 400 MW Thermal Power Plant
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082106
.
31.
Smith
,
R.
,
2005
,
Chemical Process: Design and Integration
,
John Wiley & Sons
,
Chichester, UK
.
You do not currently have access to this content.