Abstract

There is a global need for residual waste management to prevent environmental and health hazards from waste and reduce its volume for disposal to sanitary landfills. A waste-to-energy (WtE) facility can provide solutions by converting energy from waste to generate electricity. In this study, a method of selecting the most appropriate WtE technology for residual wastes from medical, industrial, and electronic sectors was formulated and implemented through multi-attribute decision analysis. The preference of the investigators with technical knowledge from different fields of expertise was considered in ranking the most important parameters in the study. From the comparison of seven waste conversion technologies and four power generation technologies, the pyrolysis-Brayton plant was found to be the most suitable WtE technology for residual waste. Using empirical, literature, and industry data, a pyrolysis-Brayton WtE power plant was simulated at capacities of 1, 3, and 10 tons per day (tpd) for the three waste sectors. The results of the study showed that a WtE plant can reduce the volume of residual wastes by up to 90% and generated electricity up to 1.2 MW for 10 tpd plant simulations. The flexibility and small footprint of the pyrolysis-Brayton setup is suitable for installation in clustered locations. A pilot demonstration is recommended for future studies.

References

1.
Kaza
,
S.
,
Yao
,
L. C.
,
Bhada-Tata
,
P.
, and
Van Woerden
,
F.
,
2018
,
What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050
,
World Bank
,
Washington, DC
.
2.
ecoprog GmbH
,
2020
, “
Waste to Energy Monitor 2020/2021
,” https://www.ecoprog.com/publications/energy-management/waste-to-energy.htm, Accessed January 10, 2021.
3.
Yap
,
H. Y.
, and
Nixon
,
J. D.
,
2015
, “
A Multi-Criteria Analysis of Options for Energy Recovery From Municipal Solid Waste in India and the UK
,”
Waste Manage.
,
46
(
1
), pp.
265
277
.
4.
Perrot
,
J.-F.
, and
Subiantoro
,
A.
,
2018
, “
Municipal Waste Management Strategy Review and Waste-to-Energy Potentials in New Zealand
,”
Sustainability
,
10
(
9
), p.
3114
.
5.
Rahman
,
S. M. S.
,
Azeem
,
A.
, and
Ahammed
,
F.
,
2017
, “
Selection of an Appropriate Waste-to-Energy Conversion Technology for Dhaka City, Bangladesh
,”
Int. J. Sustainable Eng.
,
10
(
2
), pp.
99
104
.
6.
Manegdeg
,
F.
,
Coronado
,
L. O.
, and
Paña
,
R.
,
2020
, “
Medical Waste Treatment and Electricity Generation Using Pyrolyzer-Rankine Cycle for Specialty Hospitals in Quezon City, Philippines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
463
(
1
), p.
012180
.
7.
Manegdeg
,
F.
,
De Silos
,
P. Y.
, and
Medrano
,
J.
,
2021
, “
A Case Study on the Usage of Residential Residual Waste for Energy Generation via Biodigester-Pyrolyzer and Steam Rankine Cycle
,”
ASEAN Eng. J.
,
11
(
1
), pp.
13
23
.
8.
Edwards
,
W.
, and
Newman
,
J.
,
1982
,
Multiattribute Evaluation
,
SAGE Publications, Inc.
,
Thousand Oaks, CA
.
9.
Patel
,
M. R.
,
2017
, “
SMART- Multi-criteria Decision-Making Technique for Use in Planning Activities
,”
New Horizons Civ. Eng. (NHCE 2017)
, pp.
1
6
.
10.
Kuo
,
J.
, and
Dow
,
J.
,
2017
, “
Biogas Production From Anaerobic Digestion of Food Waste and Relevant Air Quality Implications
,”
J. Air Waste Manage. Assoc.
,
67
(
9
), pp.
1000
1011
.
11.
Whiting
,
K.
,
Fanning
,
M.
, and
Wood
,
S.
,
2013
,
An Investigation into the Performance (Environmental & Health) of Waste to Energy Technologies Internationally
,
Environmental Protection Authority
,
Western Australia
, https://www.epa.wa.gov.au/sites/default/files/Publications/WSP
12.
Yang
,
H.-H.
,
Luo
,
S.-W.
,
Lee
,
K.-T.
,
Wu
,
J.-Y.
,
Chang
,
C. W.
, and
Chu
,
P. F.
,
2016
, “
Fine Particulate Speciation Profile and Emission Factor of Municipal Solid Waste Incinerator Established by Dilution Sampling Method
,”
J. Air Waste Manage. Assoc.
,
66
(
8
), pp.
807
814
.
13.
Frankenhaeuser
,
M.
,
Manninen
,
H.
,
Kojo
,
I.
,
Ruuskanen
,
J.
,
Vartiainen
,
T.
,
Vesterinen
,
R.
, and
Virkki
,
J.
,
1993
, “
Organic Emissions From Co-combustion of Mixed Plastics With Coal in a Bubbling Fluidized Bed Boiler
,”
Chemosphere
,
27
(
1–3
), pp.
309
316
.
14.
DP Cleantech
,
2019
, Energos Borregaard Case Study: Sarpsborg I & II.
15.
Dong
,
J.
,
Tang
,
Y.
,
Nzihou
,
A.
,
Chi
,
Y.
,
Weiss-Hortala
,
E.
, and
Ni
,
M.
,
2018
, “
Life Cycle Assessment of Pyrolysis, Gasification and Incineration Waste-to-Energy Technologies: Theoretical Analysis and Case Study of Commercial Plants
,”
Sci. Total Environ.
,
626
(
1
), pp.
744
753
.
16.
Central Pollution Control Board
,
2016
,
Study on Plastic Waste Disposal through Plasma Pyrolysis Technology
,
CPCB
,
Delhi, India
, https://cpcb.nic.in/displaypdf.php?id=cGxhc3RpY3dhc3RlL1BsYXNtYS1QeXJvbHlzaXMtZmluYWwtUmV wb3J0LTIxLTExLTE2LnBkZg
17.
Hardaker
,
A.
,
2017
, “
Machine Turns Waste Plastic into Energy
,”
BusinessCloud
. https://www.businesscloud.co.uk/news/machine-turns-waste-plastic-into-energy/
18.
Kalogirou
,
E. N.
,
2017
,
Waste-to-Energy Technologies and Global Applications
,
CRC Press
,
Boca Raton, FL 
.
19.
Czajczyńska
,
D.
,
Krzyżyńska
,
R.
,
Jouhara
,
H.
, and
Spencer
,
N.
,
2017
, “
Use of Pyrolytic Gas From Waste Tire as a Fuel: A Review
,”
Energy
,
134
(
1
), pp.
1121
1131
.
20.
Nicolae
,
B.
,
2014
, “
Plasma Gasification—The Waste-to-Energy Solution for the Future
,”
Probl. Reg. Energy
, pp.
107
115
. https://www.proquest.com/docview/2219122875/fulltextPDF/9B64C75CC47A403BPQ/1?accountid=10098
21.
Lam
,
S. S.
, and
Chase
,
H. A.
,
2012
, “
A Review on Waste to Energy Processes Using Microwave Pyrolysis
,”
Energies
,
5
(
10
), pp.
4209
4232
.
22.
Zhang
,
Y.
,
Cui
,
Y.
,
Liu
,
S.
,
Fan
,
L.
,
Zhou
,
N.
,
Peng
,
P.
,
Wang
,
Y.
,
Guo
,
F.
,
Min
,
M.
,
Cheng
,
Y.
,
Liu
,
Y.
,
Lei
,
H.
,
Chen
,
P.
,
Li
,
B.
, and
Ruan
,
R.
,
2020
, “
Fast Microwave-Assisted Pyrolysis of Wastes for Biofuels Production—A Review
,”
Bioresour. Technol.
,
297
(
1
), p.
122480
.
23.
Beneroso
,
D.
,
Monti
,
T.
,
Kostas
,
E. T.
, and
Robinson
,
J.
,
2017
, “
Microwave Pyrolysis of Biomass for Bio-Oil Production: Scalable Processing Concepts
,”
Chem. Eng. J.
,
316
(
1
), pp.
481
498
.
24.
Hartmann
,
H.
, and
Ahring
,
B. K.
,
2005
, “
Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Influence of Co-digestion With Manure
,”
Water Res.
,
39
(
8
), pp.
1543
1552
.
25.
Banks
,
C.
,
Heaven
,
S.
,
Zhang
,
S.
, and
Baier
,
U.
,
2018
,
Food Waste Digestion: Anaerobic Digestion of Food Waste for a Circular Economy
,
IEA Bioenergy Task 37
.
26.
De Baere
,
L.
, and
Mattheeuws
,
B.
,
2012
,
Waste Management Vol. 3: Recycling and Recovery
,
K. J.
Thomè-Kozmiensky
, and
S.
Thiel
, eds.,
TK Verlag Karl Thomé Kozmiensky
,
Nietwerder
, pp.
517
526
.
27.
Oreggioni
,
G.
,
Gowreesunker
,
B.
,
Tassou
,
S.
,
Bianchi
,
G.
,
Reilly
,
M.
,
Kirby
,
M.
,
Toop
,
T.
, and
Theodorou
,
M.
,
2017
, “
Potential for Energy Production From Farm Wastes Using Anaerobic Digestion in the UK: An Economic Comparison of Different Size Plants
,”
Energies
,
10
(
9
), p.
1396
.
28.
Di Maria
,
F.
,
Contini
,
S.
,
Bidini
,
G.
,
Boncompagni
,
A.
,
Lasagni
,
M.
, and
Sisani
,
F.
,
2016
, “
Energetic Efficiency of an Existing Waste to Energy Power Plant
,”
Energy Procedia
,
101
(
1
), pp.
1175
1182
.
29.
National Research Council (US) Committee on Health Effects of Waste Incineration
,
2000
,
Waste Incineration and Public Health
,
National Academies Press
,
Washington, DC
.
30.
Tishman Environment and Design Center
,
2019
,
U.S. Municipal Solid Waste Incinerators: An Industry in Decline
,
Global Alliance for Incinerator Alternatives
,
US
.
32.
Tang
,
J.
,
2012
, “
A Cost-Benefit Analysis of Waste Incineration With Advanced Bottom Ash Separation Technology-From A System Perspective for a Chinese Municipality-Guanghan
,
Vienna
33.
Escamilla-García
,
P. E.
,
Camarillo-López
,
R. H.
,
Carrasco-Hernández
,
R.
,
Fernández-Rodríguez
,
E.
, and
Legal-Hernández
,
J. M.
,
2020
, “
Technical and Economic Analysis of Energy Generation From Waste Incineration in Mexico
,”
Energy Strategy Rev.
,
31
(
1
), pp.
100542
.
34.
Yassin
,
L.
,
Lettieri
,
P.
,
Simons
,
S. J. R.
, and
Germanà
,
A.
,
2009
, “
Techno-economic Performance of Energy-From-Waste Fluidized Bed Combustion and Gasification Processes in the UK Context
,”
Chem. Eng. J.
,
146
(
3
), pp.
315
327
.
35.
Arena
,
U.
,
2012
, “
Process and Technological Aspects of Municipal Solid Waste Gasification. A Review
,”
Waste Manage.
,
32
(
4
), pp.
625
639
.
36.
Wong
,
D.
, and
Tam
,
S.
,
2014
,
Thermal Waste Treatment in the European Union
.
37.
Seo
,
Y.-C.
,
Alam
,
M. T.
, and
Yang
,
W.-S.
,
2018
, “Gasification of Municipal Solid Waste,”
Gasification for Low-Grade Feedstock
,
Y.-S.
Yun
, ed.,
IntechOpen
,
UK
, pp.
115
142
.
38.
Fracaro
,
G. P. M.
,
Souza
,
S. N. M.
,
Medeiros
,
M.
,
Formentini
,
D. F.
, and
Marques
,
C. A.
,
2011
, “
Economic Feasibility of Biomass Gasification for Small-Scale Electricity Generation in Brazil
,”
Proceedings of the World Renewable Energy Congress—Sweden
,
Linköping, Sweden
, May
8–13, 2011
, Vol.
57
, pp.
295
302
.
39.
D’Alessandro
,
B.
,
D’Amico
,
M.
,
Desideri
,
U.
, and
Fantozzi
,
F.
,
2013
, “
The IPRP (Integrated Pyrolysis Regenerated Plant) Technology: From Concept to Demonstration
,”
Appl. Energy
,
101
(
1
), pp.
423
431
.
40.
Yu
,
G.
,
Hung
,
C.-Y.
, and
Hung
,
I.
,
2018
, “
An Optimized Pyrolysis Technology With Highly Energy Efficient Conversion of Waste Plastics Into Clean Fuel While Substantially Reducing Carbon Emission
,”
Int. J. Environ. Sci. Dev.
,
9
(
4
), pp.
95
99
.
41.
Mitsui Engineering & Shipbuilding Co. Ltd
,
2017
, “
Operating Experience With Pyrolysis/Gasification of Wastes and Ash Melting in Energy Recovery from Waste Materials
,” https://task32.ieabioenergy.com/wp-content/uploads/sites/2/2017/03/02_Mitsui.pdf
42.
Quicker
,
P.
,
2016
, “
Alternative Thermal Waste Treatment Processes
,” (March) https://isvag.be/wp-content/uploads/2020/07/13.2.1-Wetenschappelijke-adviesraad-2016-Prof.-Dr.-Ing.-Quicker.pdf
43.
DGEngineering
,
2009
, “
Waste Pyrolysis Plant ‘Burgau,’
” (July), pp.
1
16.
http://www.dgengineering.de/download/open/Burgau-2009-EN.pdf
44.
Bridgwater
,
A. V.
,
Toft
,
A. J.
, and
Brammer
,
J. G.
,
2002
, “
A Techno-economic Comparison of Power Production by Biomass Fast Pyrolysis With Gasification and Combustion
,”
Renewable Sustainable Energy Rev.
,
6
(
3
), pp.
181
246
.
45.
Khongkrapan
,
P.
,
Thanompongchart
,
P.
,
Tippayawong
,
N.
, and
Kiatsiriroat
,
T.
,
2014
, “
Microwave Plasma Assisted Pyrolysis of Refuse Derived Fuels
,”
Open Eng.
,
4
(
1
), pp.
72
79
.
46.
Huang
,
H.
,
Tang
,
L.
, and
Wu
,
C. Z.
,
2003
, “
Characterization of Gaseous and Solid Product From Thermal Plasma Pyrolysis of Waste Rubber
,”
Environ. Sci. Technol.
,
37
(
19
), pp.
4463
4467
.
47.
Willis
,
K. P.
,
Osada
,
S.
, and
Willerton
,
K. L.
,
2010
, “
Plasma Gasification: Lessons Learned at Eco-Valley WTE Facility
,”
Proceedings of the 18th Annual North American Waste-to-Energy Conference
,
Orlando, FL
,
May 11–13
.
48.
Nema
,
S. K.
, and
Ganeshprasad
,
K. S.
,
2002
, “
Plasma Pyrolysis of Medical Waste
,”
Curr. Sci.
,
83
(
3
), pp.
271
278
. https://www.jstor.org/stable/24106885
49.
Efremov
,
A. N.
, and
Dudolin
,
A. A.
,
2019
, “
Comparative Analysis of MSW Thermal Utilization Technologies for Environment Friendly WtE Plant
,”
J. Phys. Conf. Ser.
,
1370
(
1
), p.
012057
.
50.
Paulino
,
R. F. S.
,
Essiptchouk
,
A. M.
, and
Silveira
,
J. L.
,
2020
, “
The Use of Syngas From Biomedical Waste Plasma Gasification Systems for Electricity Production in Internal Combustion: Thermodynamic and Economic Issues
,”
Energy
,
199
(
1
), p.
117419
.
51.
Payakkawan
,
P.
,
Areejit
,
S.
, and
Sooraksa
,
P.
,
2014
, “
Design, Fabrication and Operation of Continuous Microwave Biomass Carbonization System
,”
Renewable Energy
,
66
(
1
), pp.
49
55
.
52.
Bionic Fuel Knowledge Partners Inc.
,
2013
,
Bionic Micro-Fuel Catalytic Microwave Depolymerization (MWDP): 2nd Generation Green Fuels from Biomass and Waste Materials
,
Bionic Laboratories BLG GmbH
,
Germany
.
53.
Arroyo
,
J.
,
Moreno
,
F.
,
Muñoz
,
M.
,
Monné
,
C.
, and
Bernal
,
N.
,
2014
, “
Combustion Behavior of a Spark Ignition Engine Fueled With Synthetic Gases Derived From Biogas
,”
Fuel
,
117
(
1
), pp.
50
58
.
54.
Sargent and Lundy
,
2020
,
Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies
,
Energy Information Administration
,
US
.
55.
U.S. Environmental Protection Agency
,
2017
,
Catalog of CHP Technologies
,
US EPA
,
Washington, DC
, https://www.epa.gov/chp/catalog-chptechnologies
56.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
57.
Tokyo Electric Power Services Co.
,
2016
, “
Study on Gas-Fired Combined Cycle Power Plant Project in Malaysia
,” (February), p.
232
, https://www.meti.go.jp/meti_lib/report/2016fy/000716.pdf
58.
González
,
J. F.
,
Encinar
,
J. M.
,
Canito
,
J. L.
, and
Rodríguez
,
J. J.
,
2001
, “
Pyrolysis of Automobile Tyre Waste. Influence of Operating Variables and Kinetics Study
,”
J. Anal. Appl. Pyrolysis
,
58
(
59
), pp.
667
683
.
59.
Lilley
,
D. G.
,
2013
, “
Flame Temperature and Species Calculations With an Excel/VBA Computer Code
,”
AFRC 2013 Industrial Combustion Symposium
, pp.
1
21
.
60.
El-Wakil
,
M. M.
,
1985
,
Power Plant Technology
,
McGraw-Hill
,
New York
.
61.
Manegdeg
,
F. G.
,
Rollon
,
A. P.
,
Ballesteros
,
F. J. C.
,
Magdaluyo
,
E. J. R.
,
De Sales-Papa
,
L. F.
,
Clemente
,
E. D.
,
Macapinlac
,
E.
,
Ibañez
,
R. T.
, and
Cervera
,
R. B. M.
,
2020
, “
Waste Profile and Waste-to-Energy Conversion Potential of Medical, Hazardous Industrial, and Electronic Residual Wastes in Metro Manila, Philippines
,”
Philipp. J. Sci.
,
150
(
4
), pp.
611
623
. https://philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol150no4/waste_profile_and_waste-to-energy_conversion_.pdf
62.
Brems
,
A.
,
Baeyens
,
J.
,
Vandecasteele
,
C.
, and
Dewil
,
R.
,
2011
, “
Polymeric Cracking of Waste Polyethylene Terephthalate to Chemicals and Energy
,”
J. Air Waste Manage. Assoc.
,
61
(
7
), pp.
721
731
.
You do not currently have access to this content.