Abstract

Non-dominated sorting genetic algorithm, second version (NSGA-II) is used as a stochastic optimization technique successfully in different engineering applications. In this study, a data-driven optimization strategy based upon evolutionary neural network (EvoNN) algorithm is developed for providing input into NSGA-II optimization. Evolutionary neural network data-driven model is built and trained using initial solutions generated by NSGA-II optimization coupled with the reservoir simulation model. Evolutionary optimization incorporated in the EvoNN strategy is applied in the trained data-driven model to generate the Pareto optimal solution, which is then used as a guiding input into NSGA-II optimization. The described method is applied in two case studies (i.e., Brugge field model and water injection pattern model). The Pareto optimal solutions obtained with data-driven model guided NSGA-II in both models show improvement in convergence and diversity of the solution. The convergence to the Pareto optimal solution has improved by 9% for case-1 (i.e., Brugge field) and by 43% for case-2 (i.e., water injection pattern model). In addition, the Pareto optimal solution obtained by the proposed hybridization has shown improvement in the water–oil ratio (WOR) up to 6% in the Brugge field and up to 97% in the water injection pattern model. This improvement can lead to wide applications in using evolutionary optimizations in real-field simulation models at acceptable computation time.

References

1.
Yue
,
W.
, and
Yilin Wang
,
J.
,
2015
, “
Feasibility of Waterflooding for a Carbonate Oil Field Through Whole-Field Simulation Studies
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
064501
.
2.
Wang
,
Z.
,
Liu
,
X.
,
Luo
,
H.
,
Peng
,
P.
,
Sun
,
X.
,
Liu
,
Y.
, and
Rui
,
Z.
,
2021
, “
Foaming Properties and Foam Structure of Produced Liquid in Alkali/Surfactant/Polymer Flooding Production
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
103005
.
3.
Sun
,
X.
,
Zhang
,
Y.
,
Wu
,
J.
,
Xie
,
M.
, and
Hu
,
H.
,
2018
, “
Optimized Cyclic Water Injection Strategy for Oil Recovery in Low-Permeability Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012905
.
4.
Sudaryanto
,
B.
, and
Yortsos
,
Y. C.
,
2000
, “
Optimization of Fluid Front Dynamics in Porous Media Using Rate Control I Equal Mobility Fluids
,”
Phys. Fluids
,
12
(
7
), pp.
1656
1670
.
5.
Brouwer
,
D. R.
, and
Jansen
,
J. D.
,
2004
, “
Dynamic Optimization of Waterflooding With Smart Wells Using Optimal Control Theory
,”
SPE J.
,
9
(
4
), pp.
391
402
.
6.
Sarma
,
P.
, and
Chen
,
W. H.
,
2008
, “
Applications of Optimal Control Theory for Efficient Production Optimisation of Realistic Reservoirs
,”
International Petroleum Technology Conference
,
Kuala Lumpur, Malaysia
,
Dec. 3
.
7.
Sarma
,
P.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
, and
Chen
,
W. H.
,
2006
, “
Efficient Real-Time Reservoir Management Using Adjoint-Based Optimal Control and Model Updating
,”
Comput. Geosci.
,
10
(
1
), pp.
3
36
.
8.
Sarma
,
P.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
,
2005
, “
Efficient Closed-Loop Production Optimization Under Uncertainty
,”
SPE Europec/EAGE Annual Conference
,
Society of Petroleum Engineers
,
Madrid, Spain
, p.
14
.
9.
Alhuthali
,
A. H.
,
Datta-Gupta
,
A.
,
Yuen
,
B.
, and
Fontanilla
,
J. P.
,
2010
, “
Field Applications of Waterflood Optimization via Optimal Rate Control With Smart Wells
,”
SPE Reservoir Eval. Eng.
,
13
(
3
), pp.
406
422
.
10.
Wen
,
T.
,
Thiele
,
M. R.
,
Ciaurri
,
D. E.
,
Aziz
,
K.
, and
Ye
,
Y.
,
2014
, “
Waterflood Management Using Two-Stage Optimization With Streamline Simulation
,”
Comput. Geosci.
,
18
(
3
), pp.
483
504
.
11.
Fu
,
J.
, and
Wen
,
X.-H.
,
2017
, “
Model-Based Multiobjective Optimization Methods for Efficient Management of Subsurface Flow
,”
SPE J.
,
22
(
6
), pp.
1984
1998
.
12.
Fu
,
J.
, and
Wen
,
X.-H.
,
2018
, “
A Regularized Production-Optimization Method for Improved Reservoir Management
,”
SPE J.
,
23
(
2
), pp.
467
481
.
13.
Liu
,
Y.
,
Shuangqing
,
C.
,
Bing
,
G.
, and
Ping
,
X.
,
2019
, “
Layout Optimization of Large-Scale Oil–Gas Gathering System Based on Combined Optimization Strategy
,”
Neurocomputing
,
332
, pp.
159
183
.
14.
Artun
,
E.
,
Ertekin
,
T.
,
Watson
,
R.
, and
Al-Wadhahi
,
M.
,
2011
, “
Development of Universal Proxy Models for Screening and Optimization of Cyclic Pressure Pulsing in Naturally Fractured Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
3
(
6
), pp.
667
686
.
15.
Mohaghegh
,
S. D.
,
2011
, “
Reservoir Simulation and Modeling Based on Pattern Recognition
,”
SPE Digital Energy Conference and Exhibition
,
The Woodlands, TX
,
Nov. 4
.
16.
Mohaghegh
,
S. D.
,
Modavi
,
C. A.
,
Hafez
,
H. H.
,
Haajizadeh
,
M.
,
Kenawy
,
M. M.
, and
Guruswamy
,
S.
,
2006
, “
Development of Surrogate Reservoir Models (SRM) For Fast Track Analysis of Complex Reservoirs
,”
Intelligent Energy Conference and Exhibition
,
Amsterdam, The Netherlands
,
Nov. 4
.
17.
Naderi
,
F.
,
Siavashi
,
M.
, and
Nakhaee
,
A.
,
2021
, “
A Novel Streamline-Based Objective Function for Well Placement Optimization in Waterfloods
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102104
.
18.
Siavashi
,
M.
, and
Yazdani
,
M.
,
2018
, “
A Comparative Study of Genetic and Particle Swarm Optimization Algorithms and Their Hybrid Method in Water Flooding Optimization
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102903
.
19.
Al Dhaif
,
R.
,
Ibrahim
,
A. F.
, and
Elkatatny
,
S.
,
2021
, “
Prediction of Surface Oil Rates for Volatile Oil and Gas Condensate Reservoirs Using Artificial Intelligence Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033001
.
20.
Van
,
S. L.
, and
Chon
,
B. H.
,
2017
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
21.
Lesan
,
A.
,
Eshraghi
,
S. E.
,
Bahroudi
,
A.
,
Rasaei
,
M. R.
, and
Rahami
,
H.
,
2017
, “
State-of-the-Art Solution of Capacitance Resistance Model by Considering Dynamic Time Constants as a Realistic Assumption
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012904
.
22.
Centilmen
,
A.
,
Ertekin
,
T.
, and
Grader
,
A. S.
,
1999
, “
Applications of Neural Networks in Multiwell Field Development
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 3
.
23.
Doraisamy
,
H.
,
Ertekin
,
T.
, and
Grader
,
A. S.
,
2000
, “
Field Development Studies by Neuro-Simulation: An Effective Coupling of Soft and Hard Computing Protocols
,”
Comput. Geosci.
,
26
(
8
), pp.
963
973
.
24.
Johnson
,
V. M.
, and
Rogers
,
L. L.
,
2001
, “
Applying Soft Computing Methods to Improve the Computational Tractability of a Subsurface Simulation–Optimization Problem
,”
J. Pet. Sci. Eng.
,
29
(
3
), pp.
153
175
.
25.
Yeten
,
B.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
,
2003
, “
Optimization of Nonconventional Well Type, Location, and Trajectory
,”
SPE J.
,
8
(
3
), pp.
200
210
.
26.
Liu
,
W.
,
Liu
,
W. D.
, and
Gu
,
J.
,
2020
, “
A Machine Learning Method to Infer Inter-Well Connectivity Using Bottom-Hole Pressure Data
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103007
.
27.
Ayala
,
L. F.
, and
Ertekin
,
T.
,
2005
, “
Analysis of Gas-Cycling Performance in Gas/Condensate Reservoirs Using Neuro-Simulation
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 9
.
28.
Parada
,
C. H.
, and
Ertekin
,
T.
,
2012
, “
A New Screening Tool for Improved Oil Recovery Methods Using Artificial Neural Networks
,”
SPE Western Regional Meeting
,
Bakersfield, CA
,
Mar. 21
.
29.
Amirian
,
E.
,
Leung
,
J. Y.
,
Zanon
,
S.
, and
Dzurman
,
P.
,
2013
, “
Data-Driven Modeling Approach for Recovery Performance Prediction in SAGD Operations
,”
SPE Heavy Oil Conference-Canada
,
Calgary, Alberta, Canada
,
June 11
.
30.
Demiryurek
,
U.
,
Banaei-Kashani
,
F.
,
Shahabi
,
C.
, and
Wilkinson
,
F. G.
,
2008
, “
Neural-Network Based Sensitivity Analysis for Injector-Producer Relationship Identification
,”
Intelligent Energy Conference and Exhibition
,
Amsterdam, The Netherlands
,
Feb. 25
.
31.
Zhao
,
H.
,
Kang
,
Z.
,
Zhang
,
X.
,
Sun
,
H.
,
Cao
,
L.
, and
Reynolds
,
A. C.
,
2015
, “
INSIM: A Data-Driven Model for History Matching and Prediction for Waterflooding Monitoring and Management With a Field Application
,”
SPE Reservoir Simulation Symposium
,
Houston, TX
,
Feb. 23
.
32.
Kalantari-Dahaghi
,
A.
,
Mohaghegh
,
S.
, and
Esmaili
,
S.
,
2015
, “
Data-Driven Proxy at Hydraulic Fracture Cluster Level: A Technique for Efficient CO2-Enhanced Gas Recovery and Storage Assessment in Shale Reservoir
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
515
530
.
33.
Nguyen
,
A. P.
,
Kim
,
J. S.
,
Lake
,
L. W.
,
Edgar
,
T. F.
, and
Haynes
,
B.
,
2011
, “
Integrated Capacitance Resistive Model for Reservoir Characterization in Primary and Secondary Recovery
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 30
.
34.
Yrigoyen
,
A.
,
Saputelli
,
L.
,
Chacon
,
A.
, and
Chegin
,
J.
,
2017
, “
Identifying Cost-Effective Waterflooding Optimization Opportunities in Mature Reservoirs From Data Driven Analytics
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 9
.
35.
Cao
,
Q.
,
Banerjee
,
R.
,
Gupta
,
S.
,
Li
,
J.
,
Zhou
,
W.
, and
Jeyachandra
,
W.
,
2016
, “
Data Driven Production Forecasting Using Machine Learning
,”
SPE Argentina Exploration and Production of Unconventional Resources Symposium
,
Buenos Aires, Argentina
,
June 1
.
36.
Chakraborti
,
N.
,
2014
, “Strategies for Evolutionary Data Driven Modeling in Chemical and Metallurgical Systems,”
Applications of Metaheuristics in Process Engineering
,
J.
Valadi
, and
P.
Siarry
, eds.,
Springer International Publishing
,
Cham
, pp.
89
122
.
37.
Chakraborti
,
N.
,
2016
,
Computational Approaches to Materials Design: Theoretical and Practical Aspects
,
IGI Global
,
Hershey, PA
, pp.
346
368
.
38.
Peters
,
E.
,
Arts
,
R. J.
,
Brouwer
,
G. K.
,
Geel
,
C. R.
,
Cullick
,
S.
,
Lorentzen
,
R. J.
, and
Chen
,
Y.
,
2009
, “
Results of the Brugge Benchmark Study for Flooding Optimisation and History Matching
,”
SPE Reservoir Simulation Symposium
,
The Woodlands, TX
,
Feb. 1
.
39.
Chakraborti
,
N.
,
2013
, “Chapter 5—Evolutionary Data-Driven Modeling,”
Informatics for Materials Science and Engineering
,
K.
Rajan
, ed.,
Butterworth-Heinemann
,
Oxford
, pp.
71
95
.
40.
Li
,
X.
,
2003
, “A Real-Coded Predator-Prey Genetic Algorithm for Multiobjective Optimization,”
Evolutionary Multi-Criterion Optimization
,
C. M.
Fonseca
,
P. J.
Fleming
,
E.
Zitzler
,
L.
Thiele
, and
K.
Deb
, eds., Lecture Notes in Computer Science, vol. 2632,
Springer
,
Berlin/Heidelberg
, pp.
207
221
.
41.
Mondal
,
D. N.
,
Sarangi
,
K.
,
Pettersson
,
F.
,
Sen
,
P. K.
,
Saxén
,
H.
, and
Chakraborti
,
N.
,
2011
, “
Cu-Zn Separation by Supported Liquid Membrane Analyzed Through Multi-Objective Genetic Algorithms
,”
Hydrometallurgy
,
107
(
3
), pp.
112
123
.
42.
Pettersson
,
F.
,
Biswas
,
F.
,
Sen
,
P. K.
,
Saxén
,
H.
, and
Chakraborti
,
N.
,
2009
, “
Analyzing Leaching Data for Low-Grade Manganese Ore Using Neural Nets and Multiobjective Genetic Algorithms
,”
Mater. Manuf. Processes
,
24
(
3
), pp.
320
330
.
43.
Pettersson
,
F.
,
Chakraborti
,
N.
, and
Saxén
,
H.
,
2007
, “
A Genetic Algorithms Based Multi-Objective Neural Net Applied to Noisy Blast Furnace Data
,”
Appl. Soft Comput.
,
7
(
1
), pp.
387
397
.
44.
Al-Aghbari
,
M.
,
Al-Wadhahi
,
M.
, and
Gujarathi
,
A. M.
,
2021
, “
Multi-Objective Optimization of Brugge Field for Short-Term and Long-Term Waterflood Management
,”
Arabian J. Sci. Eng.
45.
Asadollahi
,
M.
,
Nævdal
,
G.
,
Dadashpour
,
M.
, and
Kleppe
,
J.
,
2014
, “
Production Optimization Using Derivative Free Methods Applied to Brugge Field Case
,”
J. Pet. Sci. Eng.
,
114
, pp.
22
37
.
46.
Chen
,
B.
, and
Xu
,
J.
,
2019
, “
Stochastic Simplex Approximate Gradient for Robust Life-Cycle Production Optimization: Applied to Brugge Field
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092905
.
47.
Foroud
,
T.
,
Baradaran
,
A.
, and
Seifi
,
A.
,
2018
, “
A Comparative Evaluation of Global Search Algorithms in Black Box Optimization of Oil Production: A Case Study on Brugge Field
,”
J. Pet. Sci. Eng.
,
167
, pp.
131
151
.
You do not currently have access to this content.