Abstract

Advanced engine design and alternative fuels present the possibility of fuel injection at purely supercritical conditions in diesel engines and gas turbines. The complex interactions that govern this phenomenon still need significant research, particularly the boundary conditions for fuel injection are critical for accurate simulation. However, the flow inside the injector itself is often omitted to reduce the computational efforts, and thus, velocity, mass flux, or total pressure is specified at the injector exit (or domain inlet), often with simplified velocity profiles and turbulence levels. This simplified inlet boundary treatment has minimal effects on results for conventional fuel injection conditions, however, the validity of this approach at supercritical conditions has not been assessed. Comprehensive real-gas and binary fluid mixing models have been implemented for computational fluid dynamics (CFD) analysis of fuel-air mixing at supercritical conditions. The model is verified using prior CFD results from the literature. The model is used to investigate the effects of the shape of axial velocity and mass fraction profiles at the inlet boundary with the goal to improve the comparison of predictions to experimental data. Results show that the boundary conditions have a significant effect on the predictions, and none of the cases match precisely with experimental data. The study reveals that the physical location of the inlet boundary might be difficult to infer correctly from the experiments and highlights the need for high-quality, repeatable measurements at supercritical conditions to support the development of relevant high-fidelity models for fuel-air mixing.

References

1.
Oefelein
,
J. C.
,
2019
, “
Advances in Modeling Supercritical Fluid Behavior and Combustion in High-Pressure Propulsion Systems
,”
AIAA Scitech 2019 Forum
, p.
0634
.
2.
Huo
,
H.
, and
Yang
,
V.
,
2017
, “
Large-Eddy Simulation of Supercritical Combustion: Model Validation Against Gaseous H2–O2 Injector
,”
J. Propul. Power
,
33
(
5
), pp.
1272
1284
.
3.
Gnanaskandan
,
A.
, and
Bellan
,
J.
,
2017
, “
Numerical Simulation of Jet Injection and Species Mixing Under High-Pressure Conditions
,”
J. Phys. Conf. Ser.
,
821
(
1
), p
012020
.
4.
Yang
,
S.
,
Li
,
Y.
,
Wang
,
X.
,
Unnikrishnan
,
U.
,
Yang
,
V.
, and
Sun
,
W.
,
2017
, “
Comparison of Tabulation and Correlated Dynamic Evaluation of Real Fluid Properties for Supercritical Mixing
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
.
5.
Ma
,
P. C.
,
Bravo
,
L.
, and
Ihme
,
M.
,
2015
, “
Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications
,”
No. ARL-RP-0551. Army Research Lab Aberdeen Proving Ground MD Vehicle Technology Directorate
.
6.
Ma
,
P. C.
,
Lv
,
Y.
, and
Ihme
,
M.
,
2017
, “
An Entropy-Stable Hybrid Scheme for Simulations of Transcritical Real-Fluid Flows
,”
J. Comput. Phys.
,
340
, pp.
330
357
.
7.
Petit
,
X.
,
Ribert
,
G.
,
Lartigue
,
G.
, and
Domingo
,
P.
,
2013
, “
Large-Eddy Simulation of Supercritical Fluid Injection
,”
J. Supercrit. Fluids
,
84
, pp.
61
73
.
8.
Müller
,
H.
,
Niedermeier
,
C. A.
,
Jarczyk
,
M.
,
Pfitzner
,
M.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2016
, “
Large-Eddy Simulation of Trans-and Supercritical Injection
,”
Prog. Propuls. Phys.
,
8
, pp.
5
24
.
9.
Qiu
,
L.
, and
Reitz
,
R. D.
,
2014
, “
Simulation of Supercritical Fuel Injection With Condensation
,”
Int. J. Heat Mass Transfer
,
79
, pp.
1070
1086
.
10.
Reitz
,
R. D.
, and
Rutland
,
C. J.
,
1995
, “
Development and Testing of Diesel Engine CFD Models
,”
Prog. Energy Combust. Sci.
,
21
(
2
), pp.
173
196
.
11.
Desantes
,
J. M.
,
García-Oliver
,
J. M.
,
Pastor
,
J. M.
,
Pandal
,
A.
,
Baldwin
,
E.
, and
Schmidt
,
D. P.
,
2016
, “
Coupled/Decoupled Spray Simulation Comparison of the ECN Spray a Condition With the Σ-Y Eulerian Atomization Model
,”
Int. J. Multiphase Flow
,
80
, pp.
89
99
.
12.
Anez
,
J.
,
Ahmed
,
A.
,
Hecht
,
N.
,
Duret
,
B.
,
Reveillon
,
J.
, and
Demoulin
,
F. X.
,
2019
, “
Eulerian–Lagrangian Spray Atomization Model Coupled With Interface Capturing Method for Diesel Injectors
,”
Int. J. Multiphase Flow
,
113
, pp.
325
342
.
13.
Bell
,
I. H.
, and
Lemmon
,
E. W.
,
2016
, “
Automatic Fitting of Binary Interaction Parameters for Multi-Fluid Helmholtz-Energy-Explicit Mixture Models
,”
J. Chem. Eng. Data
,
61
(
11
), pp.
3752
3760
.
14.
Strakey
,
P. A.
,
2019
, “
Oxy-Combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070706
.
15.
Gubba
,
S. R.
,
Jupudi
,
R. S.
,
Pasunurthi
,
S. S.
,
Wijeyakulasuriya
,
S. D.
,
Primus
,
R. J.
,
Klingbeil
,
A.
, and
Finney
,
C. E. A.
,
2018
, “
Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082205
.
16.
Manikantachari
,
K. R. V.
,
Rahman
,
R. K.
,
Martin
,
S. M.
,
Velez
,
C.
, and
Vasu
,
S. S.
,
2020
, “
Influence of Equation-of-States on Supercritical CO2 Combustion Mixtures
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062106
.
17.
Manikantachari
,
K. R. V.
,
Vesely
,
L.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
.
18.
Sok
,
R.
,
Yoshimura
,
K.
,
Nakama
,
K.
, and
Kusaka
,
J.
,
2021
, “
Experimental and Numerical Analysis on the Influences of Direct Fuel Injection Into Oxygen-Depleted Environment of a Homogeneous Charge Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122302
.
19.
Kalvakala
,
K.
,
Pal
,
P.
,
Wu
,
Y.
,
Kukkadapu
,
G.
,
Kolodziej
,
C.
,
Gonzalez
,
J. P.
,
Waqas
,
M. U.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Analysis of Fuel Effects on Advanced Compression Ignition Using a Cooperative Fuel Research Engine Computational Fluid Dynamics Model
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102304
.
20.
Ali
,
K.
,
Kim
,
C.
,
Lee
,
Y.
,
Oh
,
S.
, and
Kim
,
K.
,
2021
, “
A Comparative Numerical Study of the Combustion Performance of the Syngas-Fueled HCCI Engine Using a Toroidal Piston, Square Bowl Piston, and Flat Piston Shape at Different Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072305
.
21.
Roy
,
A.
,
Joly
,
C.
, and
Segal
,
C.
,
2013
, “
Disintegrating Supercritical Jets in a Subcritical Environment
,”
J. Fluid Mech.
,
717
, pp.
193
202
.
22.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
23.
Tuma
,
P. E.
,
2008
, “
Fluoroketone C2F5C(O)CF(CF3)2 as a Heat Transfer Fluid for Passive and Pumped 2--Phase Applications
,”
2008 Twenty-Fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Semi-Therm
,
San Jose, CA
, pp.
173
179
. .
24.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg, MD
.
You do not currently have access to this content.