Abstract

Self-healing wind turbine blades can reduce costs associated with maintenance, repair, and energy compensation. Self-healing is the ability to sustain and recover from damage autonomously. We discuss the efforts made to optimize the self-healing properties of wind turbine blades and provide a new system to maximize this offset. This system utilizes vacuum-assisted resin transfer molding (VARTM), and 3D printed templates to imprint a vascular network onto a single glass fiber-reinforced polymer (FRP) sheet. This imprinted layer is infused with Grubbs first-generation catalyst and filled with dicyclopentadiene (DCPD) which is then sealed using plastic sheeting. The sealed imprint layer is embedded into a larger multilayer FRP prior to VARTM. After VARTM, the completed multilayer FRP is fully capable of self-healing microcracks. Three-dimensional printed templates with square grid and hexagonal patterns were used to evaluate how differences in DCPD distribution affect overall recovery. Three-point bending tests were performed to obtain the maximum flexural strengths of the FRP samples before and after self-healing to evaluate recovery. Overall, with the imprint layer method, the catalyst was focused in one area of the complete FRP, reducing the amount of unused catalyst present in the FRP. Also, the samples created using the imprint method were able to achieve a maximum average recovery of over 200% and a storage efficiency of 100%.

References

1.
Amano
,
R.
,
Rohatgi
,
P.
,
Lucci
,
J. M.
,
Schultz
,
B.
, and
Ruzek
,
A.
,
2009
, “
Design and Demonstration of Self-Healing Behavior in
,”
7th International Energy Conversion Engineering Conference.
,
Denver, CO
,
Aug. 2–5
.
2.
Lucci
,
J. M.
,
Amano
,
R. S.
,
Rohatgi
,
P.
, and
Schultz
,
B.
,
2008
, “
Experiment and Computational Analysis of Self-Healing in an Aluminum Alloy
,”
ASME International Mechanical Engineering Congress & Exposition.
3.
Lucci
,
J. M.
,
Amano
,
R. S.
,
Rohatgi
,
P.
, and
Schultz
,
B.
,
2009
, “
Self-Healing in an Aluminum Alloy Reinforced With Microtubes
,”
3rd Energy Nanotechnology International Conference
,
Jacksonville, FL
,
2008
, pp.
79
88
.
4.
Martinez Lucci
,
J.
,
Amano
,
R.
,
Rohatgi
,
P.
, and
Schultz
,
B.
,
2009
, “
Self-Healing
in
an Aluminum Alloy Reinforced With Carbon Fiber Microtubes
,”
Conference of AIAA
,
Orlando
, pp.
3
6
.
5.
Guntur
,
K.
,
Amano
,
R. S.
,
Lucci
,
J. M.
,
Rohatgi
,
P. K.
, and
Schultz
,
B.
,
2009
, “
Self-Healing Technology for Compressor and Turbine Blades
,”
54th ASME Turbo Expo 2009
,
Orlando, FL
,
June 8–12
, pp.
759
763
.
6.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
7.
Tarfaoui
,
M.
,
Shah
,
O. R.
, and
Nachtane
,
M.
,
2019
, “
Design and Optimization of Composite Offshore Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051204
.
8.
Amano
,
R. S.
,
Matt
,
A.
,
Zhang
,
Q.
,
Strong
,
S.
, and
Mishra
,
S.
,
2013
, “
Tensile Strength and Elongation of Thermoset Polymer Composites for Self-Healing
,”
Bell J. Econ.
,
8
(
1
), pp.
23
40
.
9.
Lucci
,
J. M.
,
Amano
,
R. S.
, and
Rohatgi
,
P.
,
2009
, “
Computational Analysis of Self-Healing in a Polymer Matrix With Microvascular Networks
,”
ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference
,
New York, NY
,
2008
, pp.
409
417
.
10.
Martinez Lucci
,
J.
,
Amano
,
R. S.
, and
Rohatgi
,
P. K.
,
2017
, “
Heat Transfer and Fluid Flow Analysis of Self-Healing in Metallic Materials
,”
Heat Mass Transfer
,
53
(
3
), pp.
825
848
.
11.
Martinez-Lucci
,
J.
,
Amano
,
R. S.
, and
Rohatgi
,
P.
,
2021
, “
Review of Self-Healing in Metal Composites
,”
J. Aeronaut. Astronaut. Aviat.
,
53
(
4
), pp.
441
472
.
12.
Nosonovsky
,
M.
,
Amano
,
R.
,
Lucci
,
J. M.
, and
Rohatgi
,
P. K.
,
2009
, “
Physical Chemistry of Self-Organization and Self-Healing in Metals
,”
Phys. Chem. Chem. Phys.
,
11
(
41
), pp.
9530
9536
.
13.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2019
, “
Definition and Interpretation of Wind Farm Efficiency in Complex Terrain: A Discussion
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
055501
.
14.
Yuji
,
O.
, and
Koichi
,
W.
,
2019
, “
A New Approach Toward Power Output Enhancement Using Multirotor Systems With Shrouded Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051203
.
15.
Simla
,
T.
,
Stanek
,
W.
, and
Czarnowska
,
L.
,
2019
, “
Thermo-Ecological Cost of Electricity Generated in Wind Turbine Systems
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
031201
.
16.
Matt
,
A. K. K.
,
Beyhaghi
,
S.
,
Amano
,
R. S.
, and
Guo
,
J.
,
2017
, “
Self-Healing of Wind Turbine Blades Using Microscale Vascular Vessels
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051208
.
17.
Matt
,
A. K. K.
,
Strong
,
S.
,
ElGammal
,
T.
, and
Amano
,
R. S.
,
2015
, “
Development of Novel Self-Healing Polymer Composites for Use in Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051202
.
18.
Shen
,
R. L.
,
Amano
,
R. S.
, and
Lewinski
,
G.
,
2019
, “
Self-Healing Performance Comparison Between Two Promising Vascular Vessel Systems of the Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111203
.
19.
Shen
,
R. L.
,
Ren
,
M. J.
,
Amano
,
R. S.
,
Long
,
M. J.
, and
Gong
,
Y. L.
,
2020
, “
Self-Healing of Wind Turbine Blades by Pressurized Delivery of Healing Agent
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
081304
.
20.
Matt
,
A. K. K.
,
Beyhaghi
,
S.
,
Amano
,
R. S.
, and
Guo
,
J.
,
2016
, “
Self-Healing of Wind Turbine Blades Using Micro-Scale Vascular Vessels
,”
2016 International Conference on Next Generation Wind Energy
,
Lund, Sweden
.
21.
Shen
,
R.
,
Amano
,
R. S.
,
Lewinski
,
G.
, and
Matt
,
A. K. K.
,
2019
, “
A New Vascular System Highly Efficient in the Storage and Transport of Healing Agent for Self-Healing Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051212
.
22.
White
,
S. R.
,
Sottos
,
N. R.
,
Geubelle
,
P. H.
,
Moore
,
J. S.
,
Kessler
,
M. R.
,
Sriram
,
S. R.
,
Brown
,
E. N.
, and
Viswanathan
,
S.
,
2001
, “
Autonomic Healing of Polymer Composites
,”
Nature
,
409
(
6822
), pp.
794
797
.
23.
Motuku
,
M.
,
Vaidya
,
U. K.
, and
Janowski
,
G. M.
,
1999
, “
Parametric Studies on Self-Repairing Approaches for Resin Infused Composites Subjected to Low Velocity Impact
,”
Smart Mater. Struct.
,
8
(
5
), pp.
623
638
.
24.
Toohey
,
K. S.
,
Sottos
,
N. R.
,
Lewis
,
J. A.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2007
, “
Self-Healing Materials With Microvascular Networks
,”
Nat. Mater.
,
6
(
8
), pp.
581
585
.
25.
Patrick
,
J. F.
,
Hart
,
K. R.
,
Krull
,
B. P.
,
Diesendruck
,
C. E.
,
Moore
,
J. S.
,
White
,
S. R.
, and
Sottos
,
N. R.
,
2014
, “
Continuous Self-Healing Life Cycle in Vascularized Structural Composites
,”
Adv. Mater.
,
26
(
25
), pp.
4302
4308
.
26.
Brondsted
,
P.
,
Lilholt
,
H.
, and
Lystrup
,
A.
,
2005
, “
Composite Materials for Wind Power Turbine Blades
,”
Annu. Rev. Mater. Res.
,
35
(
1
), pp.
505
538
.
27.
Kessler
,
M. R.
,
2002
, “
Characterization and Performance of a Self-Healing Composite Material
,”
Ph.D. thesis
,
University of Illinois at Urbana-Champaign
,
Ann Arbor
.
28.
ASTM
,
2008
, “
Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials
.”
29.
Elanchezhian
,
C.
,
Ramnath
,
B. V.
, and
Hemalatha
,
J.
,
2014
, “
Mechanical Behaviour of Glass and Carbon Fibre Reinforced Composites at Varying Strain Rates and Temperatures
,”
Procedia Mater. Sci.
,
6
, pp.
1405
1418
.
30.
MatWeb, Overview of Materials for Polydicyclopentadiene (PDCPD)
. http://www.matweb.com/search/datasheet.aspx?matguid=16d3d6b1e32c4c368fa1ddac6afb2b93&ckck=1, Accessed July 10, 2021.
You do not currently have access to this content.