Abstract

This work experimentally investigates the effects of elevated combustor pressures on the characteristics of a lean premixed reacting methane/air jet injected into a lean vitiated crossflow using a 12.7 mm axial jet. Experiments were conducted in an axially staged combustor, which implements a reacting jet in crossflow (RJIC) configuration and operates over a pressure range of 1−5 atmospheres. Simultaneous CH* chemiluminescence and particle image velocimetry (PIV) are used to study the flow field and flame behavior. The results show that the reacting jet trajectory exhibits greater penetration with elevated pressure, which is a novel finding compared to available data in the literature. However, the flame liftoff point and ignition delay time both decreased with elevated pressure, which was attributed to decreased vorticity along the flame boundary which corresponds to increased Damköhler numbers (Da). Emissions measurements confirm the NOx increase with pressure as reported in the literature for single-stage gas turbine combustors. Concurrently, emission measurements for the staged configuration show the strong NOx benefit of the RJIC system: the data prove a reduction of global outlet emission levels at elevated pressure with the axially staged configuration. The axial emission reduction was attributed to the decreasing liftoff at elevated pressure levels. Hence, the research emphasizes that the flame and emission characteristics are coupled; they are not only dependent on the geometric parameters and momentum flux ratios but are also a function of pressure.

References

1.
Davis
,
L. B.
, and
Black
,
S. H.
,
1995
, “
Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines
,”
PowerGen Conference-Pennwell Conferences & Exhibitions
, pp.
57
68
.
2.
Leonard
,
G.
, and
Stegmaier
,
J.
,
1994
, “
Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
), pp.
542
546
.
3.
Prade
,
B.
,
2013
, “Gas Turbine Operation and Combustion Performance Issues,”
Modern Gas Turbine Systems
,
P.
Jansohn
, ed.,
Elsevier
,
New York
, pp.
383
423
.
4.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1990
, “
Ultra-Low NOx Rich-Lean Combustion
,”
Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers
, vol.
79061
, p.
V003T06A022
.
5.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1991
, “
Lean Low NOx Combustion Concept Evaluation
,”
Symp. Combust.
,
23
(
1
), pp.
1063
1070
.
6.
Zeldovich
,
I.
,
Barenblatt
,
G.
, and
Librovich
,
V.
,
1985
,
Mathematical Theory of Combustion and Explosions
.
7.
Zevenhoven
,
R.
, and
Kilpinen
,
P.
,
2001
, “
Control of Pollutants in Flue Gases and Fuel Gases
,” pp.
73
136
.
8.
Correa
,
S. M.
,
1993
, “
A Review of NO x Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.
9.
Thompson
,
D.
,
Brown
,
T. D.
, and
Beér
,
J. M.
,
1972
, “
NOX Formation in Combustion
,”
Combust. Flame
,
19
(
1
), pp.
69
79
.
10.
Sullivan
,
D. A.
,
1977
, “
A Simple Gas Turbine Combustor NOx Correlation Including the Effect of Vitiated Air
,”
J. Eng. Power
,
99
(
2
), pp.
145
152
.
11.
Rutar
,
T.
,
Scott
,
M.
,
Nicol
,
D.
,
1997
, “
An Engineering Modeling Study of NOx Dependency on Incomplete Premixing at Gas Turbine Engine Conditions
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
.
12.
Sattelmayer
,
T.
,
Polifke
,
W.
,
Winkler
,
D.
, and
Döbbeling
,
K.
,
1998
, “
Nox-Abatement Potential of Lean-Premixed GT Combustors
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
48
59
.
13.
Nicol
,
D.
,
Malte
,
P. C.
,
Lai
,
J.
,
Marinov
,
N. N.
,
Pratt
,
D. T.
, and
Corr
,
R. A.
,
1992
, “
NOx Sensitivities for Gas Turbine Engines Operated on Lean-Premixed Combustion and Conventional Diffusion Flames
,”
ASME International Gas Turbine and Aeroengine Congress and Exposition
,
Cologne, Germany
,
June 1–4
, Vol.
3
,
American Society of Mechanical Engineers
.
14.
Winkler
,
D.
,
Geng
,
W.
,
Engelbrecht
,
G.
,
Stuber
,
P.
,
Knapp
,
K.
, and
Griffin
,
T.
,
2017
, “
Staged Combustion Concept for Gas Turbines
,”
J. Global Power Propul. Soc.
,
1
, p.
CVLCX0
.
15.
Karim
,
H.
,
Natarajan
,
J.
,
Narra
,
V.
,
Cai
,
J.
,
Rao
,
S.
,
Kegley
,
J.
, and
Citeno
,
J.
,
2017
, “
Staged Combustion System for Improved Emissions Operability and Flexibility for 7HA Class Heavy Duty Gas Turbine Engine
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea and Air
,
Charlotte, NC
,
June 26–30
,
American Society of Mechanical Engineers
, pp.
1
10
.
16.
Martin
,
S. M.
,
Laster
,
W. R.
, and
Bilbao
,
J. E. P.
,
2017
, “
Axial Stage Combustion System With Exhaust Gas Recirculation
,”
U.S. Patent Application 15/311,856, filed April 27, 2017
.
17.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
18.
Karagozian
,
A. R.
,
2010
, “
Transverse Jets and Their Control
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
531
553
.
19.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.
20.
Holdeman
,
J. D.
, 1972, “
Correlation for Temperature Profiles in the Plane of Symmetry Downstream of a Jet Injected Normal to a Crossflow
,” Report No. 764.
21.
Becker
,
H. A.
, and
Yamazaki
,
S.
,
1978
, “
Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames
,”
Combust. Flame
,
33
(
C
), pp.
123
149
.
22.
Pratte
,
B. D.
, and
Baines
,
W. D.
,
1967
, “
Profiles of the Round Turbulent Jet in A Cross Flow
.
J. Hydraul. Div.
,
93
(
6
), pp.
53
64
.
23.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames. Part 1. Scaling Laws for Strong Transverse Jets
,”
J. Fluid Mech.
,
443
, pp.
1
25
.
24.
Yao
,
T.
,
Yang
,
W. H.
, and
Luo
,
K. H.
,
2018
, “
Direct Numerical Simulation Study of Hydrogen/Air Auto-Ignition in Turbulent Mixing Layer at Elevated Pressures
,”
Comput. Fluids
,
173
, pp.
59
72
.
25.
Steinberg
,
A. M.
,
Sadanandan
,
R.
,
Dem
,
C.
,
Kutne
,
P.
, and
Meier
,
W.
,
2013
, “
Structure and Stabilization of Hydrogen Jet Flames in Cross-Flows
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1499
1507
.
26.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames. Part 2. Velocity and OH Field Imaging
,”
443
, pp.
27
68
.
27.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
1996
, “
An Analysis of the Time-Averaged Properties of the Far Field of the Transverse Jet
,”
Proceedings of the 34th Aerospace Science Meeting and Exhibit
,
Reno, NV
,
Jan. 15–18
.
28.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
(
1
), pp.
21
32
.
29.
Wagner
,
J. A.
,
Dayton
,
J. W.
,
Linevitch
,
K.
, and
Cetegen
,
B. M.
,
2018
, “
Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3763
3771
.
30.
Nair
,
V.
,
Sirignano
,
M.
,
Emerson
,
B.
,
Halls
,
B.
,
Jiang
,
N.
,
Felver
,
J.
,
Roy
,
S.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2019
, “
Counter Rotating Vortex Pair Structure in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1489
1496
.
31.
Rodrigues
,
N. S.
,
Busari
,
O.
,
Senior
,
W. C. B.
,
McDonald
,
C. T.
,
Chen
,
Y. T.
,
North
,
A. J.
,
Laster
,
W. R.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2020
, “
NOX Reduction in an Axially Staged Gas Turbine Model Combustor Through Increase in the Combustor Exit Mach Number
,”
Combust. Flame
,
212
(
X
), pp.
282
294
.
32.
Pinchak
,
M. D.
,
Shaw
,
V. G.
, and
Gutmark
,
E. J.
,
2018
, “
The Effects of Nozzle Geometry and Equivalence Ratio on a Premixed Reacting Jet in Vitiated Cross-flow
,”
Combust. Flame
,
191
, pp.
353
367
.
33.
Saini
,
P.
,
Chterev
,
I.
,
Pareja
,
J.
,
Aigner
,
M.
, and
Boxx
,
I.
,
2020
, “
Effect of Pressure on Hydrogen Enriched Natural Gas Jet Flames in Crossflow
,”
Flow Turbul. Combust.
,
105
(
3
), pp.
787
806
.
34.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
(
2007
), pp.
199
227
.
35.
Zerhouni
,
E.
,
2006
, “
Clinical Research at a Crossroads: The NIH Roadmap
,”
J. Invest. Med.
,
54
(
4
), pp.
171
173
.
36.
Bandaru
,
R. V.
, and
Turns
,
S. R.
,
2000
, “
Turbulent Jet Flames in a Crossflow: Effects of Some Jet, Crossflow, and Pilot-Flame Parameters on Emissions
,”
Combust. Flame
,
121
(
1–2
), pp.
137
151
.
37.
Lamont
,
W. G.
,
Roa
,
M.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2012
, “
Emission Measurements and CH* Chemiluminescence of a Staged Combustion Rig for Stationary Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081502
.
38.
Kolb
,
M.
,
Ahrens
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
A Model for Predicting the Lift-Off Height of Premixed Jets in Vitiated Cross Flow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081901
.
39.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
.
40.
Ebi
,
D.
,
Doll
,
U.
,
Schulz
,
O.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2019
, “
Ignition of a Sequential Combustor: Evidence of Flame Propagation in the Autoignitable Mixture
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5013
5020
.
41.
Ahrens
,
D.
,
Kolb
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2014
, “
NOX Formation in a Reacting Premixed Jet in Hot Cross Flow
,”
Volume 4B: Combustion, Fuels and Emissions
,
Düsseldorf, Germany
,
June 16–20
,
American Society of Mechanical Engineers
, pp.
1
13
.
42.
Goh
,
E.
,
Sirignano
,
M.
,
Nair
,
V.
,
Emerson
,
B.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2017
, “
Modeling of Minimum NOx in Staged-Combustion Architectures at Elevated Temperatures
,”
Proceedings of the ASME Turbo Expo
, Vol.
50848
, pp.
1
8
.
43.
Roa
,
M.
,
Lamont
,
W. G.
,
Meyer
,
S. E.
,
Szedlacsek
,
P.
, and
Lucht
,
R. P.
,
2012
, “
Emission Measurements and Oh-Plif of Reacting Hydrogen Jets in Vitiated Crossflow for Stationary Gas Turbines
,”
Proceedings of the ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, Vol.
44687
, pp.
491
498
.
44.
Prathap
,
C.
,
Galeazzo
,
F. C. C.
,
Kasabov
,
P.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Beck
,
C.
,
Krebs
,
W.
, and
Wegner
,
B.
,
2012
, “
Analysis of NOX Formation in an Axially Staged Combustion System at Elevated Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031507
.
45.
Lyle
,
K. H.
,
Tseng
,
L. K.
,
Gore
,
J. P.
, and
Laurendeau
,
N. M.
,
1999
, “
A Study of Pollutant Emission Characteristics of Partially Premixed Turbulent Jet Flames
,”
Combust. Flame
,
116
(
4
), pp.
627
639
.
46.
Rutar
,
T.
, and
Malte
,
P. C.
,
2002
, “
Nox Formation in High-Pressure Jet-Stirred Reactors With Significance to Lean-Premixed Combustion Turbines
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
776
783
.
47.
Sirignano
,
M. D.
,
Nair
,
V.
,
Emerson
,
B. L.
,
Seitzman
,
J.
, and
Lieuwen
,
T. C.
,
2020
, “
Nitrogen Oxide Emissions From Premixed Reacting Jets in a Vitiated Crossflow
,”
Combust. Sci. Technol.
,
192
(
7
), pp.
1389
1419
.
48.
Steele
,
R. C.
,
Tonouchi
,
J. H.
,
Nicol
,
D. G.
,
Horning
,
D. C.
,
Malte
,
P. C.
, and
Pratt
,
D. T.
,
1998
, “
Characterization of NOx, N20, and CO for Lean-Premixed Combustion in a High-Pressure Jet-Stirred Reactor
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
303
310
.
49.
Han
,
D. S.
,
Kim
,
G. B.
,
Kim
,
H. S.
, and
Jeon
,
C. H.
,
2014
, “
Experimental Study of NOx Correlation for Fuel Staged Combustion Using Lab-Scale Gas Turbine Combustor at High Pressure
,”
Exp. Therm. Fluid Sci.
,
58
(
x
), pp.
62
69
.
50.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel-Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(
1–2
), pp.
274
288
.
51.
Hoferichter
,
V.
,
Ahrens
,
D.
,
Kolb
,
M.
, and
Sattelmayer
,
T.
,
2014
, “
A Reactor Model for the Nox Formation in a Reacting Jet in Hot
,”
Proceedings of ASME Turbo Expo
,
Düsseldorf, Germany
,
June 16–20
, vol.
45691
, pp.
1
10
.
52.
Thielicke
,
W.
, and
Stamhuis
,
E. J.
,
2014
, “
PIVlab—Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Software
,
2
, pp.
1
10
.
53.
He
,
K.
,
Sun
,
J.
, and
Tang
,
X.
,
2013
, “
Guided Image Filtering
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
6
), pp.
1397
1409
.
54.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man. Cybern.
,
9
(
1
), pp.
62
66
.
55.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
D. R.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Time-Averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-flow
,”
Combust. Flame
,
161
(
7
), pp.
1792
1803
.
56.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.
57.
Mungal
,
M. G.
, and
Hasselbrink
,
E. F.
,
2003
, “
Jets in Crossflow—Effects of Heat Release
,” pp.
173
182
.
58.
Hu
,
E.
,
Li
,
X.
,
Meng
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
,
Xie
,
Y.
, and
Huang
,
Z.
,
2015
, “
Laminar Flame Speeds and Ignition Delay Times of Methane-Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
158
, pp.
1
10
.
59.
Norrish
,
R. G. W.
, and
Foord
,
S.
,
1936
, “
The Kinetics of the Combustion of Methane
,”
Proc. R. Soc. London Ser. A—Math. Phys. Sci.
,
157
(
892
), pp.
503
525
.
60.
Stiehl
,
B.
,
Otero
,
M.
,
Genova
,
T.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
The Effect of Pressure on NOx Entitlement and Reaction Timescales in a Premixed Axial Jet-In-Crossflow
,”
ASME. J. Energy Resour. Technol.
,
143
(
11
), p.
112306
.
You do not currently have access to this content.