Abstract

The pursuit of CO2 reduction targets has increased the need of storage capacities for renewable energy or thermal energy to enhance the efficiency of industrial processes. To combine the benefits of latent and sensible thermal energy storage systems, the concept of micro encapsulated phase change material is presented. The microparticles are designed to work in a high-temperature thermal energy storage system considering economic and technical points of view. Therefore, particles of sodium nitrate are physio-mechanical coated with polyimide by using spray-drying in a fluidized bed reactor. To evaluate the influence of the process conditions, several coating experiments with different process settings are performed. Afterward, the samples are analyzed to determine their properties. Besides a microscopic and a sieving analysis, they are tested in the laboratory to define their mechanical and thermal limits. Finally, a rough layout of a thermal energy storage system using the produced particles is presented and compared to a common sensible thermal energy storage.

References

1.
United Nations Framework Convention on Climate Change (UNFCCC)
,
2010
, “
Report Part Two: Action taken by the Conference of the Parties at its fifteenth session, FCCC/CP/2009/11/Add.1
,”
Conference of the Parties on its Fifteenth Session
,
Copenhagen, Denmark
,
Dec. 7–19
.
2.
European Commission
,
2019
, “The European Green Deal,” Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, Brussels, Belgium, Vov. 12, 640 final.
3.
European Commission
,
2011
,
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Roadmap for Moving to a Competitive Low Carbon Economy in 2050, COM
.
4.
International Energy Agency
,
2018
. Market Report Series: Renewables 2018. International Energy Agency Paris.
5.
Unterluggauer
,
J.
,
Sulzgruber
,
V.
,
Doujak
,
E.
, and
Bauer
,
C.
,
2020
, “
Experimental and Numerical Study of a Prototype Francis Turbine Startup
,”
Renewable Energy
,
157
, pp.
1212
1221
.
6.
Zhang
,
N.
,
Yuan
,
Y.
,
Cao
,
X.
,
Du
,
Y.
,
Zhang
,
Z.
, and
Gui
,
Y.
,
2018
, “
Latent Heat Thermal Energy Storage Systems With Solid–Liquid Phase Change Materials: A Review
,”
Adv. Eng. Mater.
,
20
(
6
), p.
1700753
.
7.
Cascetta
,
M.
,
Serra
,
F.
,
Arena
,
S.
,
Casti
,
E.
,
Cau
,
G.
, and
Puddu
,
P.
,
2016
, “
Experimental and Numerical Research Activity on a Packed Bed Tes System
,”
Energies
,
9
(
9
), p.
758
.
8.
Huber
,
C.
,
Setoodeh Jahromy
,
S.
,
Jordan
,
C.
,
Schreiner
,
M.
,
Harasek
,
M.
,
Werner
,
A.
, and
Winter
,
F.
,
2019
, “
Boric Acid: A High Potential Candidate for Thermochemical Energy Storage
,”
Energies
,
12
(
6
), p.
1086
.
9.
Yang
,
X.
,
Lu
,
Z.
,
Bai
,
Q.
,
Zhang
,
Q.
,
Jin
,
L.
, and
Yan
,
J.
,
2017
, “
Thermal Performance of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit: Role of Annular Fins
,”
Appl. Energy.
,
202
, pp.
558
570
.
10.
Chiew
,
J.
,
Chin
,
C.
,
Toh
,
W.
,
Gao
,
Z.
, and
Jia
,
J.
,
2018
, “
Low-Temperature Macro-Encapsulated Phase Change Material Based Thermal Energy Storage System Without Air Void Space Design
,”
Appl. Therm. Eng.
,
141
, pp.
928
938
.
11.
Guo
,
J.
,
Huai
,
X.
, and
Cheng
,
K.
,
2018
, “
The Comparative Analysis on Thermal Storage Systems for Solar Power With Direct Steam Generation
,”
Renew. Energy
,
115
, pp.
217
225
.
12.
Jacob
,
R.
, and
Bruno
,
F.
,
2015
, “
Review on Shell Materials Used in the Encapsulation of Phase Change Materials for High Temperature Thermal Energy Storage
,”
Renewable. Sustainable. Energy. Rev.
,
48
, pp.
79
87
.
13.
Özonur
,
Y.
,
Mazman
,
M.
,
Paksoy
,
H.
, and
Evliya
,
H.
,
2006
, “
Microencapsulation of Coco Fatty Acid Mixture for Thermal Energy Storage With Phase Change Material
,”
Int. J. Energy Res.
,
30
(
10
), pp.
741
749
.
14.
Liu
,
L.
,
Alva
,
G.
,
Huang
,
X.
, and
Fang
,
G.
,
2016
, “
Preparation, Heat Transfer and Flow Properties of Microencapsulated Phase Change Materials for Thermal Energy Storage
,”
Renewable. Sustainable. Energy. Rev.
,
66
, pp.
399
414
.
15.
Pu
,
L.
,
Xu
,
L.
,
Zhang
,
S.
, and
Li
,
Y.
,
2019
, “
Optimization of Ground Heat Exchanger Using Microencapsulated Phase Change Material Slurry Based on Tree-Shaped Structure
,”
Appl. Energy.
,
240
, pp.
860
869
.
16.
Hawlader
,
M.
,
Uddin
,
M.
, and
Zhu
,
H.
,
2002
, “
Encapsulated Phase Change Materials for Thermal Energy Storage: Experiments and Simulation
,”
Int. J. Energy Res.
,
26
(
2
), pp.
159
171
.
17.
Karkri
,
M.
,
Lachheb
,
M.
,
Nógellová
,
Z.
,
Boh
,
B.
,
Sumiga
,
B.
,
AlMaadeed
,
M.
,
Fethi
,
A.
, and
Krupa
,
I.
,
2015
, “
Thermal Properties of Phase-Change Materials Based on High-Density Polyethylene Filled With Micro-Encapsulated Paraffin Wax for Thermal Energy Storage
,”
Energy Build.
,
88
, pp.
144
152
.
18.
Alam
,
T. E.
,
Dhau
,
J.
,
Goswami
,
D.
,
Rahman
,
M.
, and
Stefankos
,
E.
,
2014
, “
Experimental Investigation of a Packed-Bed Latent Heat Thermal Storage System With Encapsulated Phase Change Material
,”
ASME International Mechanical Engineering Congress and Exposition
,
Montreal
, p.
V06BT07A050
.
19.
Alam
,
T. E.
,
Dhau
,
J. S.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E.
,
2015
, “
Macroencapsulation and Characterization of Phase Change Materials for Latent Heat Thermal Energy Storage Systems
,”
Appl. Energy.
,
154
, pp.
92
101
.
20.
Nomura
,
T.
,
Sheng
,
N.
,
Zhu
,
C.
,
Saito
,
G.
,
Hanzaki
,
D.
,
Hiraki
,
T.
, and
Akiyama
,
T.
,
2017
, “
Microencapsulated Phase Change Materials With High Heat Capacity and High Cyclic Durability for High-Temperature Thermal Energy Storage and Transportation
,”
Appl. Energy
,
188
, pp.
9
18
.
21.
Mathur
,
A.
,
Kasetty
,
R.
,
Oxley
,
J.
,
Mendez
,
J.
, and
Nithyanandam
,
K.
,
2014
, “
Using Encapsulated Phase Change Salts for Concentrated Solar Power Plant
,”
Energy Proc.
,
49
, pp.
908
915
.
22.
Zhang
,
H.
,
Balram
,
A.
,
Tiznobaik
,
H.
,
Shin
,
D.
, and
Santhanagopalan
,
S.
,
2018
, “
Microencapsulation of Molten Salt in Stable Silica Shell Via a Water-Limited Sol-Gel Process for High Temperature Thermal Energy Storage
,”
Appl. Therm. Eng.
,
136
, pp.
268
274
.
23.
Leng
,
G.
,
Qiao
,
G.
,
Jiang
,
Z.
,
Xu
,
G.
,
Qin
,
Y.
,
Chang
,
C.
, and
Ding
,
Y.
,
2018
, “
Micro Encapsulated & Form-Stable Phase Change Materials for High Temperature Thermal Energy Storage
,”
Appl. Energy
,
217
, pp.
212
220
.
24.
Sulzgruber
,
V.
,
Wünsch
,
D.
,
Haider
,
M.
, and
Walter
,
H.
,
2020
, “
Numerical Investigation on the Flow Behavior of a Novel Fluidization Based Particle Thermal Energy Storage (fp-tes)
,”
Energy
,
200
, p.
117528
.
25.
Steiner
,
P.
,
Schwaiger
,
K.
,
Walter
,
H.
, and
Haider
,
M.
,
2016
, “
Active Fluidized Bed Technology Used for Thermal Energy Storage
,”
ASME 2016 10th International Conference on Energy Sustainability Collocated With the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
,
Charlotte, NC
,
June 26–30
.
26.
Rovense
,
F.
,
Reyes-Belmonte
,
M.
,
González-Aguilar
,
J.
,
Amelio
,
M.
,
Bova
,
S.
, and
Romero
,
M.
,
2019
, “
Flexible Electricity Dispatch for CSP Plant Using Un-Fired Closed Air Brayton Cycle With Particles Based Thermal Energy Storage System
,”
Energy
,
173
, pp.
971
984
.
27.
Jriri
,
T.
,
Rogez
,
J.
,
Bergman
,
C.
, and
Mathieu
,
J.
,
1995
, “
Thermodynamic Study of the Condensed Phases of NaNO3, KNO3, and CsNO3 and Their Transitions
,”
Thermochim. Acta.
,
266
, pp.
147
161
.
28.
Krupa
,
I.
,
Nógellová
,
Z.
,
Špitalskỳ
,
Z.
,
Janigová
,
I.
,
Boh
,
B.
,
Sumiga
,
B.
,
Kleinová
,
A.
,
Karkri
,
M.
, and
AlMaadeed
,
M. A.
,
2014
, “
Phase Change Materials Based on High-Density Polyethylene Filled With Microencapsulated Paraffin Wax
,”
Energy. Convers. Manage.
,
87
, pp.
400
409
.
29.
Liang
,
C.
,
Lingling
,
X.
,
Hongbo
,
S.
, and
Zhibin
,
Z.
,
2009
, “
Microencapsulation of Butyl Stearate As a Phase Change Material by Interfacial Polycondensation in a Polyurea System
,”
Energy. Convers. Manage.
,
50
(
3
), pp.
723
729
.
30.
Tang
,
X.
,
Li
,
W.
,
Zhang
,
X.
, and
Shi
,
H.
,
2014
, “
Fabrication and Characterization of Microencapsulated Phase Change Material With Low Supercooling for Thermal Energy Storage
,”
Energy
,
68
, pp.
160
166
.
31.
Konuklu
,
Y.
,
Unal
,
M.
, and
Paksoy
,
H. O.
,
2014
, “
Microencapsulation of Caprylic Acid With Different Wall Materials As Phase Change Material for Thermal Energy Storage
,”
Sol. Energy. Mater. Sol. Cells.
,
120
, pp.
536
542
.
32.
Nandiyanto
,
A. B. D.
, and
Okuyama
,
K.
,
2011
, “
Progress in Developing Spray-Drying Methods for the Production of Controlled Morphology Particles: From the Nanometer to Submicrometer Size Ranges
,”
Adv. Powder Tech.
,
22
(
1
), pp.
1
19
.
33.
Memon
,
S. A.
,
Cui
,
H.
,
Lo
,
T. Y.
, and
Li
,
Q.
,
2015
, “
Development of Structural–Functional Integrated Concrete With Macro-Encapsulated PCM for Thermal Energy Storage
,”
Appl. Energy.
,
150
, pp.
245
257
.
34.
Bauer
,
T.
,
Laing
,
D.
, and
Tamme
,
R.
,
2012
, “
Characterization of Sodium Nitrate as Phase Change Material
,”
Int. J. Thermophys.
,
33
(
1
), pp.
91
104
.
You do not currently have access to this content.