Abstract

This paper presents the possibility of energy storage in natural gas transmission networks using two strategies. Proof-of-concept calculations were performed under a steady-state assumption, and the more promising option was additionally modeled in a transient approach. The first strategy is based on a dedicated compressor–expander system installed at two ends of a pipeline. An electric-driven compressor increases the gas pressure in periods of peak electricity generation, while a gas expander allows energy recovery at a later stage. The compressor–expander distance determined by the inlet flow velocity of 5 m/s and a 4–5 h time shift ranges from approx. 75 to 120 km. The system provides a synergy effect, which allows to exceed 100% storage efficiency by reducing transmission losses. Storage efficiency obtained from the simplified model ranges from 70% to 128% for the performed case study. The second option uses existing compressors and pressure letdown stations expanding the gas to the distribution pressure. Here, gas pre-heating required prior to the expansion reduces the storage efficiency to about 30–40%. The dedicated machinery option was also evaluated using a transient model, which reports a lower efficiency if applied to the same assumptions. The system redesigned with the transient model is characterized by a longer storage duration (about 12 h) and a promising efficiency of 103.5%. Further research is needed to find the optimum design system parameters and to solve the detected problem of simultaneous compressor–expander operation which introduces idle work to the designed system.

References

1.
Lepszy
,
S.
,
Chmielniak
,
T.
, and
Mońka
,
P.
,
2017
, “
Storage System for Electricity Obtained From Wind Power Plants Using Underground Hydrogen Reservoir
,”
J. Power Technol.
,
97
(
1
), pp.
61
68
.
2.
Parra
,
D.
,
Swierczynski
,
M.
,
Stroe
,
D. I.
,
Norman
,
S.
,
Abdon
,
A.
,
Worlitschek
,
J.
,
O’Doherty
,
T.
, et al.,
2017
, “
An Interdisciplinary Review of Energy Storage for Communities: Challenges and Perspectives
,”
Renew. Sustain. Energy Rev.
,
79
(
Part B
), pp.
730
749
.
3.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2021
, “
Energy Storage for Grid-Scale Applications: Technology Review and Economic Feasibility Analysis
,”
Renew. Energy
,
163
(
80
), pp.
1754
1772
.
4.
de Boer
,
H. S.
,
Grond
,
L.
,
Moll
,
H.
, and
Benders
,
R.
,
2014
, “
The Application of Power-to-Gas, Pumped Hydro Storage and Compressed Air Energy Storage in an Electricity System at Different Wind Power Penetration Levels
,”
Energy
,
72
, pp.
360
370
.
5.
Argyrou
,
M. C.
,
Christodoulides
,
P.
, and
Kalogirou
,
S. A.
,
2018
, “
Energy Storage for Electricity Generation and Related Processes: Technologies Appraisal and Grid Scale Applications
,”
Renew. Sustain. Energy Rev.
,
94
, pp.
804
821
.
6.
Mahlia
,
T.
,
Saktisahdan
,
T.
,
Jannifar
,
A.
,
Hasan
,
M.
, and
Matseelar
,
H.
,
2014
, “
A Review of Available Methods and Development on Energy Storage; Technology Update
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
532
545
.
7.
Connolly
,
D.
,
Lund
,
H.
,
Finn
,
P.
,
Mathiesen
,
B.
, and
Leahy
,
M.
,
2011
, “
Practical Operation Strategies for Pumped Hydroelectric Energy Storage (PHES) Utilising Electricity Price Arbitrage
,”
Energy Pol.
,
39
(
7
), pp.
4189
4196
.
8.
Stocks
,
M.
,
Stocks
,
R.
,
Lu
,
B.
,
Cheng
,
C.
, and
Blakers
,
A.
,
2021
, “
Global Atlas of Closed-Loop Pumped Hydro Energy Storage
,”
Joule
,
5
(
1
), pp.
270
284
.
9.
Gimeno-Gutiérrez
,
M.
, and
Lacal-Arántegui
,
R.
,
2015
, “
Assessment of the European Potential for Pumped Hydropower Energy Storage Based on Two Existing Reservoirs
,”
Renew. Energy
,
75
(
1
), pp.
856
868
.
10.
Puchta
,
M.
,
Bard
,
J.
,
Dick
,
C.
,
Hau
,
D.
,
Krautkremer
,
B.
,
Thalemann
,
F.
, and
Hahn
,
H.
,
2017
, “
Development and Testing of a Novel Offshore Pumped Storage Concept for Storing Energy at Sea—Stensea
,”
J. Energy Storage
,
14
, (Part 2), pp.
271
275
.
11.
Anierobi
,
C. C.
,
Bhattacharya
,
K.
, and
Canizares
,
C. A.
,
2020
, “
Behind-the-Meter Compressed Air Energy Storage Feasibility and Applications
,”
Electr. Power Syst. Res.
,
189
, p.
106630
.
12.
Chen
,
H.
,
Cong
,
T. N.
,
Yang
,
W.
,
Tan
,
C.
,
Li
,
Y.
, and
Ding
,
Y.
,
2009
, “
Progress in Electrical Energy Storage System: A Critical Review
,”
Prog. Nat. Sci.
,
19
(
3
), pp.
291
312
.
13.
Beaudin
,
M.
,
Zareipour
,
H.
,
Schellenberglabe
,
A.
, and
Rosehart
,
W.
,
2010
, “
Energy Storage for Mitigating the Variability of Renewable Electricity Sources: An Updated Review
,”
Energy Sustain. Dev.
,
14
(
4
), pp.
302
314
.
14.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
(
7
), pp.
250
268
.
15.
Baker
,
J.
,
2008
, “
New Technology and Possible Advances in Energy Storage
,”
Energy Pol.
,
36
(
12
), pp.
4368
4373
(Foresight Sustainable Energy Management and the Built Environment Project).
16.
Becattini
,
V.
,
Geissbühler
,
L.
,
Zanganeh
,
G.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2018
, “
Pilot-Scale Demonstration of Advanced Adiabatic Compressed Air Energy Storage, Part 2: Tests With Combined Sensible/Latent Thermal-Energy Storage
,”
J. Energy Storage
,
17
(
2
), pp.
140
152
.
17.
Geissbühler
,
L.
,
Becattini
,
V.
,
Zanganeh
,
G.
,
Zavattoni
,
S.
,
Barbato
,
M.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2018
, “
Pilot-Scale Demonstration of Advanced Adiabatic Compressed Air Energy Storage, Part 1: Plant Description and Tests With Sensible Thermal-Energy Storage
,”
J. Energy Storage
,
17
(
3
), pp.
129
139
.
18.
Wang
,
S.
,
Zhang
,
X.
,
Yang
,
L.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2016
, “
Experimental Study of Compressed Air Energy Storage System With Thermal Energy Storage
,”
Energy
,
103
(
1
), pp.
182
191
.
19.
Antonelli
,
M.
,
Barsali
,
S.
,
Desideri
,
U.
,
Giglioli
,
R.
,
Paganucci
,
F.
, and
Pasini
,
G.
,
2017
, “
Liquid Air Energy Storage: Potential and Challenges of Hybrid Power Plants
,”
Appl. Energy
,
194
, pp.
522
529
.
20.
Guizzi
,
G. L.
,
Manno
,
M.
,
Tolomei
,
L. M.
, and
Vitali
,
R. M.
,
2015
, “
Thermodynamic Analysis of a Liquid Air Energy Storage System
,”
Energy
,
93
(
6
), pp.
1639
1647
.
21.
Morgan
,
R.
,
Nelmes
,
S.
,
Gibson
,
E.
, and
Brett
,
G.
,
2015
, “
Liquid Air Energy Storage—Analysis and First Results From a Pilot Scale Demonstration Plant
,”
Appl. Energy
,
137
, pp.
845
853
.
22.
Li
,
Y.
,
Cao
,
H.
,
Wang
,
S.
,
Jin
,
Y.
,
Li
,
D.
,
Wang
,
X.
, and
Ding
,
Y.
,
2014
, “
Load Shifting of Nuclear Power Plants Using Cryogenic Energy Storage Technology
,”
Appl. Energy
,
113
, pp.
1710
1716
.
23.
Peng
,
X.
,
She
,
X.
,
Li
,
C.
,
Luo
,
Y.
,
Zhang
,
T.
,
Li
,
Y.
, and
Ding
,
Y.
,
2019
, “
Liquid Air Energy Storage Flexibly Coupled With LNG Regasification for Improving Air Liquefaction
,”
Appl. Energy
,
250
, pp.
1190
1201
.
24.
Park
,
J.
,
Lee
,
I.
, and
Moon
,
I.
,
2017
, “
A Novel Design of Liquefied Natural Gas (LNG) Regasification Power Plant Integrated With Cryogenic Energy Storage System
,”
Ind. Eng. Chem. Res.
,
56
(
5
), pp.
1288
1296
.
25.
Thema
,
M.
,
Bauer
,
F.
, and
Sterner
,
M.
,
2019
, “
Power-to-Gas: Electrolysis and Methanation Status Review
,”
Renew. Sustain. Energy Rev.
,
112
(
7
), pp.
775
787
.
26.
Ozturk
,
M.
, and
Dincer
,
I.
,
2021
, “
A Comprehensive Review on Power-to-Gas With Hydrogen Options for Cleaner Applications
,”
Int. J. Hydrogen Energy.
,
46
(
62
), pp.
31511
31522
.
27.
Grigoriev
,
S.
,
Fateev
,
V.
,
Bessarabov
,
D.
, and
Millet
,
P.
,
2020
, “
Current Status, Research Trends, and Challenges in Water Electrolysis Science and Technology
,”
Int. J. Hydrogen Energy
,
45
(
49
), pp.
26036
26058
(Progress in Hydrogen Production and Utilization).
28.
Wulf
,
C.
,
Linßen
,
J.
, and
Zapp
,
P.
,
2018
, “
Review of Power-to-Gas Projects in Europe
,”
Energy Procedia
,
155
(
12
), pp.
367
378
(12th International Renewable Energy Storage Conference, IRES 2018, March 13–15, Düsseldorf, Germany).
29.
Vandewalle
,
J.
,
Bruninx
,
K.
, and
D’haeseleer
,
W.
,
2015
, “
Effects of Large-Scale Power to Gas Conversion on the Power, Gas and Carbon Sectors and Their Interactions
,”
Energy Convers. Manage.
,
94
(
8
), pp.
28
39
.
30.
Kostowski
,
W. E. A.
,
Mudryk
,
K.
, and
Werle
,
S.
,
2018
,
Renewable Energy Sources: Engineering, Technology, Innovation
,
Springer Int. Publ.
,
Cham, Switzerland
, pp.
321
331
.
31.
Kotowicz
,
J.
,
We¸cel
,
D.
, and
Jurczyk
,
M.
,
2018
, “
Analysis of Component Operation in Power-to-Gas-to-Power Installations
,”
Appl. Energy
,
216
, pp.
45
59
.
32.
Ter-Gazarian
,
A. G.
,
1994
,
Energy Storage for Power Systems
, Vol.
6
,
Peter Peregrinus Ltd., The Institution of Electrical Engineers
,
Stevenage, UK
.
33.
Díaz-González
,
F.
,
Sumper
,
A.
,
Gomis-Bellmunt
,
O.
, and
Villafáfila-Robles
,
R.
,
2012
, “
A Review of Energy Storage Technologies for Wind Power Applications
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
2154
2171
.
34.
Greenblatt
,
J. B.
,
Succar
,
S.
,
Denkenberger
,
D. C.
,
Williams
,
R. H.
, and
Socolow
,
R. H.
,
2007
, “
Baseload Wind Energy: Modeling the Competition Between Gas Turbines and Compressed Air Energy Storage for Supplemental Generation
,”
Energy Pol.
,
35
(
3
), pp.
1474
1492
.
35.
Broussely
,
M.
, and
Pistoia
,
G.
,
2007
,
Industrial Applications of Batteries: From Cars to Aerospace and Energy Storage
,
Elsevier
,
Amsterdam, Netherlands
.
36.
Kazempour
,
S. J.
,
Moghaddam
,
M. P.
,
Haghifam
,
M.
, and
Yousefi
,
G.
,
2009
, “
Electric Energy Storage Systems in a Market-Based Economy: Comparison of Emerging and Traditional Technologies
,”
Renew. Energy
,
34
(
12
), pp.
2630
2639
.
37.
Ibrahim
,
H.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2008
, “
Energy Storage Systems—Characteristics and Comparisons
,”
Renew. Sustain. Energy Rev.
,
12
(
5
), pp.
1221
1250
.
38.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
39.
Ernst
,
M.
,
Perrella Balestieri
,
J.
,
Landa
,
H.
, and
Mantelli
,
M.
,
2011
, “
Line-Pack Management for Producing Electric Power on Peak Periods
,”
Appl. Therm. Eng.
,
31
(
1
), pp.
42
49
.
40.
Valdivia
,
P.
,
Barraza
,
R.
,
Saldivia
,
D.
,
Gacitúa
,
L.
,
Barrueto
,
A.
, and
Estay
,
D.
,
2020
, “
Assessment of a Compressed Air Energy Storage System Using Gas Pipelines as Storage Devices in Chile
,”
Renew. Energy
,
147
(Part 1), pp.
1251
1265
.
41.
Danieli
,
P.
,
Carraro
,
G.
, and
Lazzaretto
,
A.
,
2020
, “
Thermodynamic and Economic Feasibility of Energy Recovery From Pressure Reduction Stations in Natural Gas Distribution Networks
,”
Energies
,
13
(
17
), Article
No. 4453
.
42.
Lo Cascio
,
E.
,
De Schutter
,
B.
, and
Schenone
,
C.
,
2018
, “
Flexible Energy Harvesting From Natural Gas Distribution Networks Through Line-Bagging
,”
Appl. Energy
,
229
, pp.
253
263
.
43.
Kostowski
,
W. J.
, and
Usón
,
S.
,
2013
, “
Comparative Evaluation of a Natural Gas Expansion Plant Integrated With an IC Engine and an Organic Rankine Cycle
,”
Energy Convers. Manage.
,
75
, pp.
509
516
.
44.
ISO 12213-3:2006(E)
,
2006
,
Natural Gas—Calculation of Compression Factor, Part 3: Calculation Using Physical Properties
,
Standard, International Organization for Standardization
,
Geneva
.
45.
GOST 30319.1-96
,
1996
,
Natural Gas. Methods of Calculation of Physical Properties. Definition of Physical Properties of Natural Gas, Its Components and Processing Products
,
Standard, State Committee of the Russian Federation for Standardization
,
Moscow, Russia
.
46.
Bobrovskij
,
S. A.
, et al
,
1976
,
Truboprovodnyj Transport Gaza (in Russian)
,
Izdatelstvo Nauka
,
Moscow
.
47.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws.
,”
J. Inst. Civil Eng.
,
11
(
4
), pp.
133
156
.
48.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
49.
Setzmann
,
U.
, and
Wagner
,
W.
,
1991
, “
A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range From the Melting Line to 625 K at Pressures Up to 100 MPa
,”
J. Phys. Chem. Ref. Data
,
20
(
6
), pp.
1061
1155
.
50.
Osiadacz
,
A. J.
, and
Yedroudj
,
M.
,
1989
, “
A Comparison of a Finite Element Method and a Finite Difference Method for Transient Simulation of a Gas Pipeline
,”
Appl. Math. Model.
,
13
(
2
), pp.
79
85
.
You do not currently have access to this content.