Abstract

Total organic carbon (TOC) is an essential parameter that indicates the quality of unconventional reservoirs. In this study, four machine learning (ML) algorithms of the adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), functional neural networks (FNN), and random forests (RFs) were optimized to evaluate the TOC. The novelty of this work is that the optimized models predict the TOC from the bulk gamma-ray (GR) and spectral GR logs of uranium, thorium, and potassium only. The ML algorithms were trained on 749 datasets from Well-1, tested on 226 datasets from Well-2, and validated on 73 data points from Well-3. The predictability of the optimized algorithms was also compared with the available equations. The results of this study indicated that the optimized ANFIS, SVR, and RF models overperformed the available empirical equations in predicting the TOC. For validation data of Well-3, the optimized ANFIS, SVR, and RF algorithms predicted the TOC with AAPEs of 10.6%, 12.0%, and 8.9%, respectively, compared with the AAPE of 21.1% when the FNN model was used. While for the same data, the TOC was assessed with AAPEs of 48.6%, 24.6%, 20.2%, and 17.8% when Schmoker model, ΔlogR method, Zhao et al. correlation, and Mahmoud et al. correlation was used, respectively. The optimized models could be applied to estimate the TOC during the drilling process if the drillstring is provided with GR and spectral GR logging tools.

References

1.
Tang
,
H.
,
Sun
,
Z.
,
He
,
Y.
,
Chai
,
Z.
,
Hasan
,
A. R.
, and
Killough
,
J.
,
2019
, “
Investigating the Pressure Characteristics and Production Performance of Liquid-Loaded Horizontal Wells in Unconventional Gas Reservoirs
,”
J. Petroleum Sci. Eng.
,
176
, pp.
456
465
.
2.
Zhao
,
P.
,
Ostadhassan
,
M.
,
Shen
,
B.
,
Liu
,
W.
,
Abarghani
,
A.
,
Liu
,
K.
,
Luo
,
M.
, and
Cai
,
J.
,
2019
, “
Estimating Thermal Maturity of Organic-Rich Shale From Well Logs: Case Studies of Two Shale Plays
,”
Fuel
,
235
, pp.
1195
1206
.
3.
Wu
,
Y.
,
Tahmasebi
,
P.
,
Yu
,
H.
,
Lin
,
C.
,
Wu
,
H. A.
, and
Dong
,
C.
,
2020
, “
Pore-Scale 3D Dynamic Modeling and Characterization of Shale Samples: Considering the Effects of Thermal Maturation
,”
J. Geophys. Res.: Solid Earth
,
125
, pp.
1
22
.
4.
Zhu
,
L.
,
Zhang
,
C.
,
Zhang
,
C.
,
Zhang
,
Z.
,
Zhou
,
X.
,
Liu
,
W.
, and
Zhu
,
B.
,
2020
, “
A New and Reliable Dual Model- and Data-Driven TOC Prediction Concept: A TOC Logging Evaluation Method Using Multiple Overlapping Methods Integrated With Semi-Supervised Deep Learning
,”
J. Petroleum Sci. Eng.
,
188
, p.
106944
.
5.
Zou
,
C. N.
,
Tao
,
S. Z.
,
Bai
,
B.
, and
Yang
,
Z.
,
2015
, “
Differences and Relations Between Unconventional and Conventional oil and gas
,”
China Petroleum Explor.
,
20
(
1
), pp.
1
16
.
6.
Kumar
,
S.
,
Das
,
S.
,
Bastia
,
R.
, and
Ojha
,
K.
,
2018
, “
Mineralogical and Morphological Characterization of Older Cambay Shale From North Cambay Basin, India: Implication for Shale Oil/Gas Development
,”
Marine Petroleum Geol.
,
97
, pp.
339
354
.
7.
Rani
,
S.
,
Padmanabhan
,
E.
, and
Prusty
,
B. K.
,
2019
, “
Review of Gas Adsorption in Shales for Enhanced Methane Recovery and CO2 Storage
,”
J. Petroleum Sci. Eng.
,
175
, pp.
634
643
.
8.
Han
,
C.
,
Wu
,
M.
,
Lin
,
W.
,
Kong
,
X.
,
Jiang
,
Z.
,
Gao
,
L.
, and
Han
,
Z.
,
2017
, “
Characteristics of Black Shale Reservoir of Wufeng-Longmaxi Formation in the Southern Sichuan Basin
,”
J. China Univ. Petroleum
,
41
(
3
), pp.
14
22
.
9.
Ma
,
L.
,
Taylor
,
K. G.
,
Dowey
,
P. J.
,
Courtois
,
L.
,
Gholinia
,
A.
, and
Lee
,
P. D.
,
2017
, “
Multi-Scale 3D Characterisation of Porosity and Organic Matter in Shales With Variable TOC Content and Thermal Maturity: Examples From the Lublin and Baltic Basins, Poland and Lithuania
,”
Int. J. Coal Geol.
,
180
, pp.
100
112
.
10.
Mahmoud
,
A. A. A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abouelresh
,
M.
,
Abdulraheem
,
A.
, and
Ali
,
A.
,
2017
, “
Determination of the Total Organic Carbon (TOC) Based on Conventional Well Logs Using Artificial Neural Network
,”
Int. J. Coal Geol.
,
179
, pp.
72
80
.
11.
Wang
,
H.
,
Wu
,
W.
,
Chen
,
T.
,
Dong
,
X.
, and
Wang
,
G.
,
2019
, “
An Improved Neural Network for TOC, S1 and S2 Estimation Based on Conventional Well Logs
,”
J. Petroleum Sci. Eng.
,
176
, pp.
664
678
.
12.
Yang
,
S.
,
Wang
,
N.
,
Li
,
M.-R.
, and
Yu
,
J.
,
2013
, “
The Logging Evaluation of Source Rocks of Triassic Yanchang Formation in Chongxin Area, Ordos Basin
,”
Nat. Gas Geosci.
,
24
(
3
), pp.
470
476
.
13.
Carvajal-Ortiz
,
H.
, and
Gentzis
,
T.
,
2015
, “
Critical Considerations When Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited
,”
Int. J. Coal Geol.
,
152
(
Part A
), pp.
113
122
.
14.
Hazra
,
B.
,
Dutta
,
S.
, and
Kumar
,
S.
,
2016
, “
TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights
,”
Int. J. Coal Geol.
,
169
, pp.
106
115
.
15.
Bolandi
,
V.
,
Kadkhodaie
,
A.
, and
Farzi
,
R.
,
2017
, “
Analyzing Organic Richness of Source Rocks From Well log Data by Using SVM and ANN Classifiers: A Case Study From the Kazhdumi Formation, the Persian Gulf Basin, Offshore Iran
,”
J. Petrol. Sci. Eng.
,
151
, pp.
224
234
.
16.
Chen
,
Y.
,
Jiang
,
S.
,
Zhang
,
D.
, and
Liu
,
C.
,
2017
, “
An Adsorbed Gas Estimation Model for Shale Gas Reservoirs via Statistical Learning
,”
Appl. Energy
,
197
, pp.
327
341
.
17.
Daigle
,
H.
,
Hayman
,
N. W.
,
Kelly
,
E. D.
,
Milliken
,
K. L.
, and
Jiang
,
H.
,
2017
, “
Fracture Capture of Organic Pores in Shales
,”
Geophys. Res. Lett.
,
44
(
5
), pp.
2167
2176
.
18.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abouelresh
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
New Robust Model to Evaluate the Total Organic Carbon Using Fuzzy Logic
,”
Paper SPE-198130-MS, The SPE Kuwait Oil & Gas Show and Conference
,
Mishref, Kuwait
,
Oct. 13–16
.
19.
Mathia
,
E. J.
,
Rexer
,
T. F. T.
,
Thomas
,
K. M.
,
Bowen
,
L.
, and
Aplin
,
A. C.
,
2018
, “
Influence of Clay, Calcareous Microfossils, and Organic Matter on the Nature and Diagenetic Evolution of Pore Systems in Mudstones
,”
J. Geophys. Res.: Solid Earth
,
124
(
1
), pp.
149
174
.
20.
Schmoker
,
J. W.
,
1979
, “
Determination of Organic Content of Appalachian Devonian Shales From Formation-Density Logs
,”
Am. Assoc. Petroleum Geol. Bull.
,
63
(
9
), pp.
1504
1509
.
21.
Schmoker
,
J. W.
,
1980
, “
Organic Content of Devonian Shale in Western Appalachian Basin
,”
Am. Assoc. Petroleum Geol. Bull.
,
64
(
12
), pp.
2156
2165
.
22.
Passey
,
Q. R.
,
Creaney
,
S.
,
Kulla
,
J. B.
,
Moretti
,
F. J.
, and
Stroud
,
J. D.
,
1990
, “
A Practical Model for Organic Richness From Porosity and Resistivity Logs
,”
Am. Assoc. Petroleum Geol. Bull.
,
74
(
12
), pp.
1777
1794
.
23.
Charsky
,
A.
, and
Herron
,
S.
,
2013
, “
Accurate, Direct Total Organic Carbon (TOC) Log From a New Advanced Geochemical Spectroscopy Tool: Comparison With Conventional Approaches for TOC Estimation
,”
Proceeding of the AAPG Annual Convention and Exhibition
,
Pittsburg, PA
,
May 19–22
.
24.
Passey
,
Q. R.
,
Bohacs
,
K.
,
Esch
,
W. L.
,
Klimentidis
,
R.
, and
Sinha
,
S.
,
2010
, “
From Oil-Prone Source Rock to Gas-Producing Shale Reservoir-Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs
,”
International Oil and Gas Conference and Exhibition
,
Beijing, China
,
June 8–10
.
25.
Wang
,
J.
,
Gu
,
D.
,
Guo
,
W.
,
Zhang
,
H.
, and
Yang
,
D.
,
2019
, “
Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012907
.
26.
Wang
,
P.
,
Chen
,
Z.
,
Pang
,
X.
,
Hu
,
K.
,
Sun
,
M.
, and
Chen
,
X.
,
2016
, “
Revised Models for Determining TOC in Shale Play: Example From Devonian Duvernay Shale, Western Canada Sedimentary Basin
,”
Marine Petroleum Geol.
,
70
, pp.
304
319
.
27.
Crain
,
E. R.
,
2000
,
Petrophysical Handbook
. Retrieved from https://spec2000.net/11-vshtoc.htm
28.
Zhao
,
P.
,
Ma
,
H.
,
Rasouli
,
V.
,
Liu
,
W.
,
Cai
,
J.
, and
Huang
,
Z.
,
2017
, “
An Improved Model for Estimating the TOC in Shale Formations
,”
Marine Petroleum Geol.
,
83
, pp.
174
183
.
29.
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2021
, “
Novel Empirical Correlation for Estimation of the Total Organic Carbon in Devonian Shale From the Spectral Gamma-Ray and Based on the Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
093002
.
30.
Tan
,
M.
,
Song
,
X.
,
Yang
,
X.
, and
Wu
,
Q.
,
2015
, “
Support-Vector-Regression Machine Technology for Total Organic Carbon Content Prediction From Wireline Logs in Organic Shale: A Comparative Study
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
792
802
.
31.
Zhu
,
L.
,
Zhang
,
C.
,
Zhang
,
C.
,
Zhang
,
Z.
,
Nie
,
X.
,
Zhou
,
X.
,
Liu
,
W.
, and
Wang
,
X.
,
2019
, “
Forming a New Small Sample Deep Learning Model to Predict Total Organic Carbon Content by Combining Unsupervised Learning With Semisupervised Learning
,”
Appl. Soft Comput.
,
83
, p.
105596
.
32.
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A. A.
, and
Abdulraheem
,
A.
,
2021
, “
Use of Machine Learning and Data Analytics to Detect Downhole Abnormalities While Drilling Horizontal Wells, With Real Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043201
.
33.
Al-Abduljabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A. A.
,
Moussa
,
T.
,
Al-shehri
,
D.
,
Abughaban
,
M.
, and
Al-yami
,
A.
,
2020
, “
Prediction of the Rate of Penetration While Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique
,”
Sustainability
,
12
(
4
), p.
1376
.
34.
Al-Abduljabbar
,
A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2021
, “
Artificial Neural Network Model for Real-Time Prediction of the Rate of Penetration While Horizontally Drilling Natural Gas-Bearing Sandstone Formations
,”
Arabian J. Geosci.
,
14
(
2
), p.
117
.
35.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abduljabbar
,
A.
,
Moussa
,
T.
,
Gamal
,
H.
, and
Al Shehri
,
D.
,
2020
, “
Artificial Neural Networks Model for Prediction of
the Rate of Penetration While Horizontally Drilling Carbonate Formations
,”
Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium
,
June 28–July 1
.
36.
Osman
,
H.
,
Ali
,
A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2021
, “
Estimation of the Rate of Penetration While Horizontally Drilling Carbonate Formation Using Random Forest
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
093003
.
37.
Ahmed
,
S. A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2019
, “
Fracture Pressure Prediction Using Radial Basis Function
,”
Paper AADE-19-NTCE-061, The 2019 AADE National Technical Conference and Exhibition
,
Denver, CO
,
Apr. 9–10
.
38.
Ahmed
,
S. A.
,
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019b
, “
Prediction of Pore and Fracture Pressures Using Support Vector Machine
,”
Paper IPTC-19523-MS, The 2019 International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
.
39.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
, and
Moussa
,
T.
,
2019
, “
Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks
,”
Energies
,
12
(
11
), p.
2125
.
40.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Alsabaa
,
A.
, and
Al Shehri
,
D.
,
2020
, “
Functional Neural Networks-Based Model for Prediction of the Static Young's Modulus for Sandstone Formations
,”
Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium
,
June 28–July 1
.
41.
Elkatatny
,
S.
,
Al-AbdulJabbar
,
A.
, and
Mahmoud
,
A. A.
,
2019
, “
New Robust Model to Estimate the Formation Tops in Real Time Using Artificial Neural Networks (ANN)
,”
Petrophysics
,
60
(
6
), pp.
825
837
.
42.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
, and
Al-Abduljabbar
,
A.
,
2021
, “
Application of Machine Learning Models for Real-Time Prediction of the Formation Lithology and Tops From the Drilling Parameters
,”
J. Petroleum Sci. Eng.
,
203
, p.
108574
.
43.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Chen
,
W.
, and
Abdulraheem
,
A.
,
2019
, “
Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs Through Applications of Artificial Intelligence
,”
Energies
,
12
(
19
), p.
3671
.
44.
Kadkhodaie-Ilkhchi
,
A.
,
Rahimpour-Bonab
,
H.
, and
Rezaee
,
M.
,
2009
, “
A Committee Machine With Intelligent Systems for Estimation of Total Organic Carbon Content From Petrophysical Data: An Example From Kangan and Dalan Reservoirs in South Pars Gas Field, Iran
,”
Comput. Geosci.
,
35
(
3
), pp.
459
474
.
45.
Shi
,
X.
,
Wang
,
J.
,
Liu
,
G.
,
Yang
,
L.
,
Ge
,
X.
, and
Jiang
,
S.
,
2016
, “
Application of Extreme Learning Machine and Neural Networks in Total Organic Carbon Content Prediction in Organic Shale With Wire Line Logs
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
687
702
.
46.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ibrahim
,
M. O.
, and
Ali
,
A.
,
2017
, “
New Technique to Determine the Total Organic Carbon Based on Well Logs Using Artificial Neural Network (White Box)
,”
Proceedings of the SPE Kingdom Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
, Paper No. SPE-188016-MS.
47.
Elkatatny
,
S.
,
2019
, “
Self-Adaptive Artificial Neural Network Technique to Predict Total Organic Carbon (TOC) Based on Well Logs
,”
Arabian J. Sci. Eng.
,
44
(
6
), pp.
6127
6137
.
48.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abouelresh
,
M.
,
Abdulraheem
,
A.
, and
Ali
,
A.
,
2020
, “
Estimation of the Total Organic Carbon Using Functional Neural Networks and Support Vector Machine
,”
Paper IPTC-19659-MS, The 12th International Petroleum Technology Conference and Exhibition
,
Dhahran, Saudi Arabia
,
Jan. 13–15
.
49.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2017
, “
Application of Artificial Intelligence Techniques in Estimating oil Recovery Factor for Water Drive Sandy Reservoirs
,”
Paper SPE-187621-MS, The 2017 SPE Kuwait Oil & Gas Show and Conference
,
Kuwait City, Kuwait
,
Oct. 15–18
.
50.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abouelresh
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques
,”
Sustainability
,
11
(
20
), p.
5643
.
51.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
, and
Al-Shehri
,
D.
,
2020
, “
Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations
,”
Sustainablity
,
12
(
5
).
52.
Chen
,
Z.
,
Jiang
,
C.
,
Lavoie
,
D.
, and
Reyes
,
J.
,
2016
, “
Model-Assisted Rock-Eval Data Interpretation for Source Rock Evaluation: Examples From Producing and Potential Shale Gas Resource Plays
,”
Int. J. Coal Geol.
,
165
, pp.
290
302
.
You do not currently have access to this content.