Abstract

It is well-known that Poiseuille number (Po, hitherto viewed mainly as a fluid mechanics parameter) decreases along a hydrodynamically developing flow, from infinity at inlet to a fixed value downstream. This study reveals that the dimensionless entropy generation rate per unit length due to fluid friction (S˙¯gen,fr) varies exactly the same way; hence, Po and S˙¯gen,fr are jointly studied for their dependence. Laminar hydrodynamic development of isothermal flow of incompressible fluid (water) in a circular micro-tube (diameter, D) is examined. Results are obtained for a given flow velocity for different D, and then, numerical experiments are conducted for different flow velocities for the same D-values. Striking similarity in trends of Po and S˙¯gen,fr shows a unique linear relation between them for the hydrodynamically developing region. It is theoretically shown that Po is a direct measure of entropy generation due to fluid friction, which explains its numerically obtained linear relation with S˙¯gen,fr. It is found that in hydrodynamically developing region, both Po and S˙¯gen,fr, decrease with decreasing D, which is the identified micro-effect.

References

1.
Fargie
,
D.
, and
Martin
,
B. W.
,
1971
, “
Developing Laminar Flow in a Pipe of Circular Cross-Section
,”
Proc. Roy. Soc. Lond. Ser. A, Math. Phys. Sci.
,
321
(
1547
), pp.
461
476
.
2.
Mahulikar
,
S. P.
,
Gulhane
,
N. P.
,
Pradhan
,
S. D.
,
Hrisheekesh
,
K.
, and
Prabhu
,
S. V.
,
2012
, “
Pressure Drop Characteristics in Continuum-Based Laminar Compressible Microconvective Flow
,”
Nano. Micro. Thermophys. Eng.
,
16
(
3
), pp.
181
197
.
3.
Pfund
,
D.
,
Rector
,
D.
,
Shekarriz
,
A.
,
Popescu
,
A.
, and
Welty
,
J.
,
2004
, “
Pressure Drop Measurements in a Microchannel
,”
AIChE J.
,
46
(
8
), pp.
1496
1507
.
4.
Ho
,
C. M.
, and
Tai
,
Y. C.
,
1998
, “
Micro-Electro-Mechanical Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
579
612
.
5.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
,
2000
, “
Pressure Driven Water Flows in Trapezoidal Silicon Micro-Channels
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
353
364
.
6.
Mala
,
G. M.
, and
Li
,
D.
,
1999
, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
142
148
.
7.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.
8.
Bayraktar
,
T.
, and
Pidugu
,
S. B.
,
2006
, “
Characterization of Liquid Flows in Microfluidic Systems
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
815
824
.
9.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2003
, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects
,”
J. Micromech. Microeng.
,
13
(
5
), pp.
568
579
.
10.
Urbanek
,
W.
,
Zemel
,
J. N.
, and
Bau
,
H.
,
1993
, “
An Investigation of the Temperature Dependence of Poiseuille Numbers in Microchannel Flow
,”
J. Micromech. Microeng.
,
3
(
4
), pp.
206
208
.
11.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011201
.
12.
Muzychka
,
Y. S.
,
2013
, “
Generalized Models for Laminar Developing Flows in Heat Sinks and Heat Exchangers
,”
Heat Transf. Eng.
,
34
(
2–3
), pp.
178
191
.
13.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transf.
,
101
(
4
), pp.
718
725
.
14.
Sahin
,
A. Z.
, and
Ben-Mansour
,
R.
,
2003
, “
Entropy Generation in Laminar Fluid Flow Through a Circular Pipe
,”
Entropy
,
5
(
5
), pp.
404
416
.
15.
Ben-Mansour
,
R.
, and
Sahin
,
A. Z.
,
2005
, “
Entropy Generation in Developing Laminar Fluid Flow Through a Circular Pipe With Variable Properties
,”
Heat Mass Transfer
,
42
(
1
), pp.
1
11
.
16.
Kahpaman
,
A.
, and
Yurusoy
,
M.
,
2008
, “
Entropy Generation due to Non-Newtonian Fluid Flow in Annular Pipe With Relative Rotation: Constant Viscosity Case
,”
J. Theor. Appl. Mech.
,
46
(
1
), pp.
69
83
.
17.
Prabhu
,
S. V.
, and
Mahulikar
,
S. P.
,
2014
, “
Effects of Density and Thermal Conductivity Variations on Entropy Generation in Gas Micro Flows
,”
Int. J. Heat Mass Transfer
,
79
, pp.
472
485
.
18.
Rastogi
,
P.
, and
Mahulikar
,
S. P.
,
2018
, “
Geometry-Based Entropy Generation Minimization in Laminar Internal Convective Micro-Flow
,”
J. Non-Eq. Thermodyn.
,
44
(
1
), pp.
81
90
.
19.
Rastogi
,
P.
, and
Mahulikar
,
S. P.
,
2018
, “
Optimization of Micro-Heat Sink Based on Theory of Entropy Generation in Laminar Forced Convection
,”
Int. J. Therm. Sci.
,
126
, pp.
96
104
.
20.
Rastogi
,
P.
, and
Mahulikar
,
S. P.
,
2018
, “
Theoretical Studies on Energy Degradation Estimation and Minimization in Laminar Convective Flow Towards the Microscale
,”
Heat Transf.—Asian Res.
,
47
(
7
), pp.
907
917
.
21.
Rastogi
,
P.
, and
Mahulikar
,
S. P.
,
2018
, “
Entropy Generation in Laminar Forced Convective Water Flow due to Overloading Toward the Microscale
,”
ASME J. Eng. Resour. Technol.
,
140
(
8
), p.
082002
.
22.
Morini
,
G. L.
,
2005
, “
Viscous Heating in Liquid Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer.
,
48
(
17
), pp.
3637
3647
.
23.
Celata
,
G. P.
,
Morini
,
G. L.
,
Marconi
,
V.
,
Mcphail
,
S. J.
, and
Zummo
,
G.
,
2006
, “
Using Viscous Heating to Determine the Friction Factor in Microchannels—An Experimental Validation
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
725
731
.
24.
Bejan
,
A.
,
1996
, “
A Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.
25.
Chen
,
R. Y.
,
1973
, “
Flow in the Entrance Region at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
153
158
.
26.
Mahulikar
,
S. P.
, and
Herwig
,
H.
,
2006
, “
Physical Effects in Laminar Micro-Convection Due to Variations in Incompressible Fluid Properties
,”
Phys. Fluids.
,
18
(
7
), p.
073601
.
27.
Sparrow
,
E. M.
,
Lin
,
S. H.
, and
Lundgren
,
T. S.
,
1964
, “
Flow Development in the Hydrodynamic Entrance Region of Tubes and Ducts
,”
Phys. Fluids.
,
7
(
3
), pp.
338
347
.
28.
Al-Nassri
,
S. A.
, and
Unny
,
T.
,
1981
, “
Developing Laminar Flow in the Inlet Length of a Smooth Pipe
,”
Appl. Sci. Res.
,
36
(
5–6
), pp.
313
332
.
29.
Niven
,
R. K.
,
2009
, “
Steady State of a Dissipative Flow-Controlled System and the Maximum Entropy Production Principle
,”
Phys. Rev. E
,
80
(
2
), p.
021113
.
30.
Parlak
,
N.
,
Gur
,
M.
,
Engin
,
T.
, and
Kucuk
,
H.
,
2011
, “
Exergy Analysis of Laminar Fluid Flow in Stainless Steel Microtubes
,”
Int. J. Exergy
,
9
(
4
), pp.
472
485
.
You do not currently have access to this content.