Abstract

Thermophotovoltaic energy conversion is a solid-state thermal-to-electric energy conversion technique which uses only infrared light i.e., heat. Its maximum achieved efficiency by proper bandgap energy selection and utilizing spectral control strategies is merely 30% which is currently still low to be used as a standalone device for energy harvesting. Recently, researchers used molten metal storage and concentrated solar power (CSP) as an input to derive these thermophotovoltaic blocks. Such blocks usually consist of an emitter and a photovoltaic power converter which boosted the system efficiency by adding a silver-based reflector to bounce unused photons back to the emitter. In this work, we have demonstrated another means of photon recycling on the conversion efficiency by passing the radiations through spectral filters before incident on these cells. The spectral filters were selected by aiming at gaining maximum conversion efficiency and a cylindrical power block was used in order to reduce the conversion losses due to edge effects. The modified model in terms of geometrical shape and spectrally controlled filters was able to achieve a conversion efficiency up to 50% even without using the back surface reflectors (BSRs). This work provides the framework for a cheap and efficient alternative to the combined-cycle electric turbines currently used to convert heat into energy inside utility-scale concentrated solar power facilities. This work enables widespread use wherever solar energy is available in abundance.

References

1.
Ritchie
,
H.
, and
Roser
,
M.
,
2017
, “
CO2 and Greenhouse Gas Emissions
,”
Our World in Data
.
2.
Herzog
,
T.
,
2009
,
World Greenhouse Gas Emissions in 2005
,
World Resources Institute
,
Washington, DC
.
3.
Kennedy
,
C.
,
Steinberger
,
J.
,
Gasson
,
B.
,
Hansen
,
Y.
,
Hillman
,
T.
,
Havranek
,
M.
, and
Pataki
,
D.
,
2009
,
Greenhouse Gas Emissions From Global Cities
,
ACS Publications
,
Northern America
.
4.
Lashof
,
D. A.
, and
Ahuja
,
D. R.
,
1990
, “
Relative Contributions of Greenhouse Gas Emissions to Global Warming
,”
Nature
,
344
(
6266
), pp.
529
531
.
5.
Elliott
,
D.
,
2013
,
Renewables
,
IOP Publishing
,
Bristol/USA
.
6.
Ekins
,
P.
,
2004
, “
Step Changes for Decarbonising the Energy System: Research Needs for Renewables, Energy Efficiency and Nuclear Power
,”
Energy Policy
,
32
(
17
), pp.
1891
1904
.
7.
Mormann
,
F.
,
2011
, “
Requirements for a Renewables Revolution
,”
Ecol. Law Q.
,
38
(
140
), p.
903
.
8.
Wang
,
D. D.
, and
Sueyoshi
,
T.
,
2017
, “
Assessment of Large Commercial Rooftop Photovoltaic System Installations: Evidence From California
,”
Appl. Energy
,
188
, pp.
45
55
.
9.
Dupré
,
O.
,
Vaillon
,
R.
, and
Green
,
M. A.
,
2015
, “
Physics of the Temperature Coefficients of Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
140
(
38
), pp.
92
100
.
10.
Singh
,
P.
, and
Ravindra
,
N. M.
,
2012
, “
Temperature Dependence of Solar Cell Performance—An Analysis
,”
Sol. Energy Mater. Sol. Cells
,
101
, pp.
36
45
.
11.
Dubey
,
S.
,
Sarvaiya
,
J. N.
, and
Seshadri
,
B.
,
2013
, “
Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review
,”
Energy Procedia
,
33
, pp.
311
321
.
12.
Hegedus
,
S. S.
, and
Luque
,
A.
,
2003
,
Handbook of Photovoltaic Science and Engineering
,
John Wiley & Sons, Ltd
,
New York
, pp.
1
43
.
13.
Gupta
,
G.
,
Rajasekharan
,
B.
, and
Hueting
,
R. J.
,
2017
, “
Electrostatic Doping in Semiconductor Devices
,”
IEEE Trans. Electron Devices
,
64
(
8
), pp.
3044
3055
.
14.
Cotal
,
H.
,
Fetzer
,
C.
,
Boisvert
,
J.
,
Kinsey
,
G.
,
King
,
R.
,
Hebert
,
P.
,
Yoon
,
H.
, and
Karam
,
N.
,
2009
, “
III–V Multijunction Solar Cells for Concentrating Photovoltaics
,”
Energy Environ. Sci.
,
2
(
2
), pp.
174
192
.
15.
Woolf
,
L.
,
1986
, “
Optimum Efficiency of Single and Multiple Bandgap Cells in Thermophotovoltaic Energy Conversion
,”
Solar Cells
,
19
(
1
), pp.
19
38
.
16.
Rühle
,
S.
,
2016
, “
Tabulated Values of the Shockley–Queisser Limit for Single Junction Solar Cells
,”
Sol. Energy
,
130
, pp.
139
147
.
17.
Green
,
M. A.
,
2006
,
Third Generation Photovoltaics.
18.
Durgadevi
,
A.
,
Arulselvi
,
S.
, and
Natarajan
,
S.
,
2011
, “
Photovoltaic Modeling and Its Characteristics
,”
2011 International Conference on Emerging Trends in Electrical and Computer Technology
,
IEEE
.
19.
Kawamura
,
H.
,
Naka
,
K.
,
Yonekura
,
N.
,
Yamanaka
,
S.
,
Kawamura
,
H.
,
Ohno
,
H.
, and
Naito
,
K.
,
2003
, “
Simulation of I–V Characteristics of a PV Module With Shaded PV Cells
,”
Sol. Energy Mater. Sol. Cells
,
75
(
3–4
), pp.
613
621
.
20.
Faraz
,
T.
,
2012
, “
Benefits of Concentrating Solar Power Over Solar Photovoltaic for Power Generation in Bangladesh
,”
2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012)
,
Dhaka, Bangladesh
,
Jan. 5–7
.
21.
Lovegrove
,
K.
, and
Csiro
,
W. S.
,
2012
, “Introduction to Concentrating Solar Power (CSP) Technology,”
Concentrating Solar Power Technology
,
Elsevier
,
Amsterdam
, pp.
3
15
.
22.
Memon
,
S.
,
2007
, “
Scope of Concentrated Solar Power Technology in Pakistan
,”
1st National Conference on Assessment & Proper Utilization of Indigenous Energy Resources and Their Impact on Environment
,
Sindh, Pakistan
,
Mar. 2
.
23.
Stökler
,
S.
,
Schillings
,
C.
, and
Kraas
,
B.
,
2016
, “
Solar Resource Assessment Study for Pakistan
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1184
1188
.
24.
Bauer
,
T.
,
2011
,
Thermophotovoltaics: Basic Principles and Critical Aspects of System Design
,
Springer Science & Business Media
,
Heidelberg, Dordrecht/London/New York
.
25.
Teofilo
,
V. L.
,
Choong
,
P.
,
Chang
,
J.
,
Tseng
,
Y.-L.
, and
Ermer
,
S.
,
2008
, “
Thermophotovoltaic Energy Conversion for Space
,”
J. Phys. Chem. C
,
112
(
21
), pp.
7841
7845
.
26.
Andreev
,
V.
,
2003
, “
An Overview of TPV Cell Technologies
,”
AIP Conf. Proc.
,
653
(
1
), pp.
289
304
.
27.
Copeland
,
A. W.
,
Black
,
O. D.
, and
Garrett
,
A.
,
1942
, “
The Photovoltaic Effect
,”
Chem. Rev.
,
31
(
1
), pp.
177
226
.
28.
Van Stryland
,
E. W.
,
Woodall
,
M. A.
,
Vanherzeele
,
H.
, and
Soileau
,
M. J.
,
1985
, “
Energy Band-Gap Dependence of Two-Photon Absorption
,”
Opt. Lett.
,
10
(
10
), pp.
490
492
.
29.
Seyf
,
H. R.
, and
Henry
,
A.
,
2016
, “
Thermophotovoltaics: A Potential Pathway to High Efficiency Concentrated Solar Power
,”
Energy Environ. Sci.
,
9
(
8
), pp.
2654
2665
.
30.
Parrott
,
J.
,
1993
, “
Radiative Recombination and Photon Recycling in Photovoltaic Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
30
(
3
), pp.
221
231
.
31.
Wilt
,
D. M.
,
Fatemi
,
N. S.
,
Hoffman
,
R. W.
,
Jenkins
,
P. P.
,
Brinker
,
D. J.
,
Scheiman
,
D.
,
Lowe
,
R.
,
Fauer
,
M.
, and
Jain
,
R. K.
,
1994
, “
High Efficiency Indium Gallium Arsenide Photovoltaic Devices for Thermophotovoltaic Power Systems
,”
Appl. Phys. Lett.
,
64
(
18
), pp.
2415
2417
.
32.
Kazim
,
A. H.
, and
Cola
,
B. A.
,
2016
, “
Electrochemical Characterization of Carbon Nanotube and Poly (3, 4-Ethylenedioxythiophene)− Poly (Styrenesulfonate) Composite Aqueous Electrolyte for Thermo-Electrochemical Cells
,”
J. Electrochem. Soc.
,
163
(
8
), p.
F867
F871
.
33.
McPheeters
,
C. O.
, and
Edward
,
T. Y.
,
2012
, “
Computational Analysis of Thin Film InGaAs/GaAs Quantum Well Solar Cells With Back Side Light Trapping Structures
,”
Opt. Express
,
20
(
106
), pp.
A864
A878
.
34.
Henry
,
A.
, and
Prasher
,
R.
,
2014
, “
The Prospect of High Temperature Solid State Energy Conversion to Reduce the Cost of Concentrated Solar Power
,”
Energy Environ. Sci.
,
7
(
6
), pp.
1819
1828
.
35.
Tian
,
Y.
, and
Zhao
,
C.-Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
36.
Romero
,
M.
, and
González-Aguilar
,
J.
,
2014
, “
Solar Thermal CSP Technology
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
3
(
1
), pp.
42
59
.
37.
Hunter
,
S. R.
,
Smith
,
D. B.
,
Polizos
,
G.
,
Schaeffer
,
D. A.
,
Lee
,
D. F.
, and
Datskos
,
P. G.
,
2014
, “
Low Cost Anti-Soiling Coatings for CSP Collector Mirrors and Heliostats
,”
High and Low Concentrator Systems for Solar Energy Applications IX
,
San Diego, CA
.
38.
Yuan
,
C.
, and
Kawajiri
,
Y.
,
2015
, “
A New Solar Fuels Reactor Using a Liquid Metal Heat Transfer Fluid: Modeling and Sensitivity Analysis
,”
J. Therm. Eng.
,
2
(
4
), pp.
837
852
.
39.
Yuan
,
C.
,
Jarrett
,
C.
,
Chueh
,
W.
,
Kawajiri
,
Y.
, and
Henry
,
A.
,
2015
, “
A new Solar Fuels Reactor Concept Based on a Liquid Metal Heat Transfer Fluid: Reactor Design and Efficiency Estimation
,”
Sol. Energy
,
122
, pp.
547
561
.
40.
Zalba
,
B.
,
Marı´n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
41.
Sarı
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1271
1277
.
42.
Madaeni
,
S. H.
,
Sioshansi
,
R.
, and
Denholm
,
P.
,
2011
, “
How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power
,”
Proc. IEEE
,
100
(
2
), pp.
335
347
.
43.
Madaeni
,
S. H.
,
Sioshansi
,
R.
, and
Denholm
,
P.
,
2011
, “
Capacity Value of Concentrating Solar Power Plants
,”
National Renewable Energy Lab. (NREL), Golden, CO
.
44.
Wang
,
Z.
,
Wang
,
H.
,
Li
,
X.
,
Wang
,
D.
,
Zhang
,
Q.
,
Chen
,
G.
, and
Ren
,
Z.
,
2015
, “
Aluminum and Silicon Based Phase Change Materials for High Capacity Thermal Energy Storage
,”
Appl. Therm. Eng.
,
89
, pp.
204
208
.
45.
Mills
,
K. C.
, and
Courtney
,
L.
,
2000
, “
Thermophysical Properties of Silicon
,”
ISIJ Int.
,
40
(
Suppl
), pp.
S130
S138
.
46.
Kazim
,
A. H.
,
Asif
,
M.
,
Nadeem
,
K.
,
Shoukat
,
Z.
,
Nazir
,
R.
,
Malik
,
M. S.
, and
Shabbir
,
A.
,
2020
, “
Efficiency Enhancement of a Thermophotovoltaic System Integrated With a Back Surface Reflector
,”
IEEE Access
,
8
, pp.
153226
153239
.
47.
Fesharaki
,
V. J.
,
Dehghani
,
M.
,
Fesharaki
,
J. J.
, and
Tavasoli
,
H.
,
2011
, “
The Effect
,”
Proceedings of the 1stInternational Conference on Emerging Trends in Energy Conservation–ETEC
,
Tehran, Iran
,
Nov. 20–21
.
48.
Köstlin
,
H.
,
1982
, “Application of Thin Semiconductor and Metal Films in Energy Technology,”
Festkörperprobleme
,
Springer
,
New York City
, pp.
229
254
.
49.
Horne
,
W.
,
Morgan
,
M.
, and
Sundaram
,
V.
,
1996
, “
IR Filters for TPV Converter Modules
,”
AIP Conf. Proc.
,
358
(
1
), pp.
35
54
.
50.
Gruenbaum
,
P.
,
Kuryla
,
M.
, and
Sundaram
,
V.
,
1995
, “
Technical and Economic Issues for Gallium Antimonide Based Thermophotovoltaic Systems
,”
AIP Conf. Proc.
,
321
(
1
), pp.
357
367
.
51.
Chubb
,
D.
, and
Nelson
,
R.
,
1995
, “
Workshop 3: Emission & Spectral Control
,”
AIP Conf. Proc.
,
321
(
1
), pp.
13
16
.
52.
Chubb
,
D.
,
2007
,
Fundamentals of Thermophotovoltaic Energy Conversion
,
Elsevier
,
New York
.
53.
Good
,
B. S.
,
Chubb
,
D. L.
, and
Lowe
,
R. A.
,
1996
, “
Comparison of Selective Emitter and Filter Thermophotovoltaic Systems
,”
AIP Conf. Proc.
,
358
(
1
), pp.
16
34
.
54.
Cheng
,
Y.
,
Kringlebotn
,
J. T.
,
Loh
,
W. H.
,
Laming
,
R. I.
, and
Payne
,
D. N.
,
1995
, “
Stable Single-Frequency Traveling-Wave Fiber Loop Laser with Integral Saturable-Absorber-Based Tracking Narrow-Band Filter
,”
Opt. Lett.
,
20
(
8
), pp.
875
877
.
55.
Hugo
,
B.
, and
Wrotnowski
,
A. C.
,
1957
, “
Fused Edge Filter Unit
,”
Google Patents
.
56.
Siri
,
K.
,
2002
, “
Maximum Power Tracking Solar Power System
,”
Google Patents
.
57.
Bauer
,
T.
,
Forbes
,
I.
,
Penlington
,
R.
, and
Pearsall
,
N.
,
2005
, “
Heat Transfer Modelling in Thermophotovoltaic Cavities Using Glass Media
,”
Sol. Energy Mater. Sol. Cells
,
88
(
3
), pp.
257
268
.
58.
Fraas
,
L.
,
Samaras
,
J.
,
Huang
,
H.X.
,
Seal
,
M.
, and
West
,
E.
,
1999
, “
Development Status on a TPV Cylinder for Combined Heat and Electric Power for the Home
,”
AIP Conf. Proc.
,
460
(
1
), pp.
371
383
.
59.
Palfinger
,
G.
,
Bitnar
,
B.
,
Durisch
,
W.
,
Mayor
,
J.-C.
,
Grützmacher
,
D.
, and
Gobrecht
,
J.
,
2003
, “
Cost Estimate of Electricity Produced by TPV
,”
Semicond. Sci. Technol.
,
18
(
5
), p.
S254
S261
.
60.
Pierce
,
D. E.
, and
Guazzoni
,
G.
,
1999
, “
High Temperature Optical Properties of Thermophotovoltaic Emitter Components
,”
AIP Conf. Proc.
,
460
(
1
), pp.
177
190
.
61.
Van den Hoek
,
W.
,
Jack
,
A.
, and
Luijks
,
G.
,
2005
,
Lamps, in Ullmanns Encyclopedia of Industrial Chemistry
,
Wiley
,
London, NY
.
62.
Vardaxoglou
,
J. C.
,
1997
,
Frequency Selective Surfaces: Analysis and Design
,
Research Studies Press
,
Edinburgh, UK
.
63.
Spector
,
S.
,
Astolfi
,
D. K.
,
Doran
,
S. P.
,
Lyszczarz
,
T. M.
, and
Raynolds
,
J. E.
,
2001
, “
Infrared Frequency Selective Surfaces Fabricated Using Optical Lithography and Phase-Shift Masks
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom.
,
19
(
6
), pp.
2757
2760
.
64.
Jefimovs
,
K.
,
Vallius
,
T.
,
Kettunen
,
V.
,
Kuittinen
,
M.
,
Turunen
,
J.
,
Vahimaa
,
P.
,
Kaipiainen
,
M.
, and
Nenonen
,
S.
,
2004
, “
Inductive Grid Filters for Rejection of Infrared Radiation
,”
J. Mod. Opt.
,
51
(
11
), pp.
1651
1661
.
65.
Reed
,
J. A.
,
1997
, “
Dissertation Proposal: Frequency Selective Surfaces With Multiple Periodic Elements
,”
University of Texas at Dallas
.
66.
Coutts
,
T. J.
,
1999
, “
A Review of Progress in Thermophotovoltaic Generation of Electricity
,”
Renewable Sustainable Energy Rev.
,
3
(
2–3
), pp.
77
184
.
67.
Baldasaro
,
P. F.
,
Brown
,
E. J.
,
Depoy
,
D. M.
,
Campbell
,
B. C.
, and
Parrington
,
J. R.
,
1995
, “
Experimental Assessment of Low Temperature Voltaic Energy Conversion
,”
AIP Conf. Proc.
,
321
(
1
), pp.
29
43
.
68.
Amy
,
C.
,
Seyf
,
H. R.
,
Steiner
,
M. A.
,
Friedman
,
D. J.
, and
Henry
,
A.
,
2019
, “
Thermal Energy Grid Storage Using Multi-Junction Photovoltaics
,”
Energy Environ. Sci.
,
12
(
1
), pp.
334
343
.
69.
Gaskill
,
D. K.
,
Bottka
,
N.
,
Aina
,
L.
, and
Mattingly
,
M.
,
1990
, “
Band-Gap Determination by Photoreflectance of InGaAs and InAlAs Lattice Matched to InP
,”
Appl. Phys. Lett.
,
56
(
13
), pp.
1269
1271
.
70.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
Dewitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
John Wiley & Sons
,
New York
.
71.
Kazim
,
A. H.
,
Booeshaghi
,
A. S.
,
Stephens
,
S. T.
, and
Cola
,
B. A.
,
2017
, “
Thermo-Electrochemical Generator: Energy Harvesting & Thermoregulation for Liquid Cooling Applications
,”
Sustainable Energy Fuels
,
1
(
6
), pp.
1381
1389
.
72.
Kazim
,
A. H.
, and
Cola
,
B. A.
,
2019
, “
Nanostructured Carbon Electrodes for Increased Power Density in Flow Thermo-Electrochemical Generator Heat Sinks
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
1
), p.
011007
.
73.
Datas
,
A.
, and
Vaillon
,
R.
,
2021
, “Chapter 11—Thermophotovoltaic Energy Conversion,”
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion
,
A.
Datas
, ed.,
Woodhead Publishing
,
ScienceDirect Book
, pp.
285
308
.
You do not currently have access to this content.