Abstract

CO2-enhanced gas recovery (CO2-EGR) is a promising, environment-friendly technology to produce more natural gas from depleted reservoirs and simultaneously sequester CO2. The subsurface flow in the heterogeneous reservoir is usually different from homogenous one, and the heterogeneity significantly affects the gas recovery. The effects of heterogeneity and the optimization of CO2 injection strategy are the key factors in CO2-EGR. Thus, one of the goals of this paper is to conduct simulations of CO2-EGR in both homogeneous and heterogeneous reservoirs to evaluate the effects of reservoir heterogeneity on CO2-EGR. The second goal is to perform optimization studies to determine optimal CO2 injection time and injection rate for achieving optimal natural gas recovery. The CO2-EGR simulations were conducted in a 3D reservoir model with a 'five-spot' well pattern by using the multi-phase simulator TOUGH2. The results show that the layers with low permeability as well as gravity segregation retard upward migration of CO2 and promote horizontal displacement efficiency. The breakthrough time of CO2 and reservoir space of underexploited natural gas directly affect the gas recovery. The optimal injection time is determined as the depleted stage, and the corresponding injection rate is optimized by using a genetic algorithm (GA) integrated with TOUGH2. The optimization of CO2 injection parameters leads to recovery factors (RFs) reaching 62.83% and 64.75% in the homogeneous and heterogeneous cases while simultaneously obtaining the economic benefit of about 8.67 and 8.95 million USD. This study shows significant economic potential as well as environmental benefits of using CO2-EGR in the depleted gas reservoir by optimizing the CO2 injection parameters. The findings of this work could assist in determining the optimal injection strategy for using CO2-EGR in industrial scale gas reservoirs.

References

1.
van der Burgt
,
M. J.
,
Cantle
,
J.
, and
Boutkan
,
V. K.
,
1992
, “
Carbon Dioxide Disposal From Coal-Based IGCC's in Depleted Gas Fields
,”
Energy Convers. Manage.
,
33
(
5–8
), pp.
603
610
.
2.
Blok
,
K.
,
Williams
,
R. H.
,
Katofsky
,
R. E.
, and
Hendriks
,
C. A.
,
1997
, “
Hydrogen Production From Natural Gas, Sequestration of Recovered CO2 in Depleted Gas Wells and Enhanced Natural Gas Recovery
,”
Energy
,
22
(
2
), pp.
161
168
.
3.
Liu
,
S.
,
Zhang
,
Y.
,
Xing
,
W.
,
Jian
,
W.
,
Liu
,
Z.
,
Li
,
T.
, and
Song
,
Y.
,
2015
, “
Laboratory Experiment of CO2–CH4 Displacement and Dispersion in Sandpacks in Enhanced Gas Recovery
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
1585
1594
.
4.
Ezekiel
,
J.
,
Ebigbo
,
A.
,
Adams
,
B. M.
, and
Saar
,
M. O.
,
2020
, “
Combining Natural Gas Recovery and CO2-Based Geothermal Energy Extraction for Electric Power Generation
,”
Appl. Energy
,
269
, p.
115012
.
5.
Liu
,
S.
,
Sun
,
B.
,
Xu
,
J.
,
Li
,
H.
, and
Wang
,
X.
,
2020
, “
Study on Competitive Adsorption and Displacing Properties of CO2 Enhanced Shale Gas Recovery: Advances and Challenges
,”
Geofluids
,
2020
, p.
6657995
.
6.
Zhao
,
J.
,
Xu
,
L.
,
Guo
,
X.
,
Li
,
Q.
,
Lv
,
X.
,
Fan
,
Q.
,
Zhao
,
J.
,
Dong
,
H.
,
Wang
,
B.
, and
Yang
,
L.
,
2021
, “
Enhancing the Gas Production Efficiency of Depressurization-Induced Methane Hydrate Exploitation via Fracturing
,”
Fuel
,
288
, p.
119740
.
7.
Wang
,
B.
,
Dong
,
H.
,
Fan
,
Z.
,
Liu
,
S.
,
Lv
,
X.
,
Li
,
Q.
, and
Zhao
,
J.
,
2020
, “
Numerical Analysis of Microwave Stimulation for Enhancing Energy Recovery From Depressurized Methane Hydrate Sediments
,”
Appl. Energy
,
262
, p.
114559
.
8.
Wang
,
J.
,
Zhao
,
J.
,
Zhang
,
Y.
,
Wang
,
D.
,
Li
,
Y.
, and
Song
,
Y.
,
2016
, “
Analysis of the Effect of Particle Size on Permeability in Hydrate-Bearing Porous Media Using Pore Network Models Combined With CT
,”
Fuel
,
163
, pp.
34
40
.
9.
Liu
,
S.
,
Li
,
H.
,
Wang
,
B.
, and
Sun
,
B.
,
2022
, “
Accelerating Gas Production of the Depressurization-Induced Natural Gas Hydrate by Electrical Heating
,”
J. Pet. Sci. Eng.
,
208
, p.
109735
.
10.
Knutson
,
T. R.
, and
Tuleya
,
R. E.
,
2004
, “
Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization
,”
J. Climate
,
17
(
18
), pp.
3477
3495
.
11.
Bui
,
M.
,
Adjiman
,
C. S.
,
Bardow
,
A.
,
Anthony
,
E. J.
,
Boston
,
A.
,
Brown
,
S.
,
Fennell
,
P. S.
,
Fuss
,
S.
,
Galindo
,
A.
,
Hackett
,
L. A.
,
Hallett
,
J. P.
,
Herzog
,
H. J.
,
Jackson
,
G.
,
Kemper
,
J.
,
Krevor
,
S.
,
Maitland
,
G. C.
,
Matuszewski
,
M.
,
Metcalfe
,
I. S.
,
Petit
,
C.
,
Puxty
,
G.
,
Reimer
,
J.
,
Reiner
,
D. M.
,
Rubin
,
E. S.
,
Scott
,
S. A.
,
Shah
,
N.
,
Smit
,
B.
,
Trusler
,
J. P. M.
,
Webley
,
P.
,
Wilcox
,
J.
, and
Mac Dowell
,
N.
,
2018
, “
Carbon Capture and Storage (CCS): The Way Forward
,”
Energy Environ. Sci.
,
11
(
5
), pp.
1062
1176
.
12.
Aminu
,
M. D.
,
Nabavi
,
S. A.
,
Rochelle
,
C. A.
, and
Manovic
,
V.
,
2017
, “
A Review of Developments in Carbon Dioxide Storage
,”
Appl. Energy
,
208
, pp.
1389
1419
.
13.
Xie
,
H.
,
Li
,
X.
,
Fang
,
Z.
,
Wang
,
Y.
,
Li
,
Q.
,
Shi
,
L.
,
Bai
,
B.
,
Wei
,
N.
, and
Hou
,
Z.
,
2014
, “
Carbon Geological Utilization and Storage in China: Current Status and Perspectives
,”
Acta Geotech.
,
9
(
1
), pp.
7
27
.
14.
Pruess
,
K.
,
2006
, “
Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy With Simultaneous Sequestration of Carbon
,”
Geothermics
,
35
(
4
), pp.
351
367
.
15.
Xu
,
J.
,
Sun
,
B.
, and
Chen
,
B.
,
2019
, “
A Hybrid Embedded Discrete Fracture Model for Simulating Tight Porous Media With Complex Fracture Systems
,”
J. Pet. Sci. Eng.
,
174
, pp.
131
143
.
16.
Cui
,
G.
,
Pei
,
S.
,
Rui
,
Z.
,
Dou
,
B.
,
Ning
,
F.
, and
Wang
,
J.
,
2021
, “
Whole Process Analysis of Geothermal Exploitation and Power Generation From a Depleted High-Temperature Gas Reservoir by Recycling CO2
,”
Energy
,
217
, p.
119340
.
17.
Liu
,
S. Y.
,
Ren
,
B.
,
Li
,
H. Y.
,
Yang
,
Y. Z.
,
Wang
,
Z. Q.
,
Wang
,
B.
,
Xu
,
J. C.
, and
Agarwal
,
R.
,
2021
, “
CO2 Storage With Enhanced Gas Recovery (CSEGR): A Review of Experimental and Numerical Studies
,”
Pet. Sci.
18.
Blunt
,
M.
,
Fayers
,
F. J.
, and
Orr
,
F. M.
, Jr.
,
1993
, “
Carbon Dioxide in Enhanced Oil Recovery
,”
Energy Convers. Manage.
,
34
(
9–11
), pp.
1197
1204
.
19.
Patel
,
M. J.
,
May
,
E. F.
, and
Johns
,
M. L.
,
2016
, “
High-Fidelity Reservoir Simulations of Enhanced Gas Recovery With Supercritical CO2
,”
Energy
,
111
, pp.
548
559
.
20.
Patel
,
M. J.
,
May
,
E. F.
, and
Johns
,
M. L.
,
2017
, “
Inclusion of Connate Water in Enhanced Gas Recovery Reservoir Simulations
,”
Energy
,
141
, pp.
757
769
.
21.
Oldenburg
,
C. M.
,
Pruess
,
K.
, and
Benson
,
S. M.
,
2001
, “
Process Modeling of CO2 Injection Into Natural Gas Reservoirs for Carbon Sequestration and Enhanced Gas Recovery
,”
Energy Fuels
,
15
(
2
), pp.
293
298
.
22.
Kubus
,
P.
,
November 2010
,
CCS and CO2-Storage Possibilities in Hungary. SPE International Conference on CO2 Capture, Storage, and Utilization
,
Society of Petroleum Engineers
,
New Orleans, LA
.
23.
Oldenburg
,
C. M.
, and
Benson
,
S. M.
,
February 2002
,
CO2 Injection for Enhanced Gas Production and Carbon Sequestration
,
SPE International Petroleum Conference and Exhibition
,
Mexico
.
24.
Oldenburg
,
C. M.
, and
Benson
,
S. M.
,
2001
,
Carbon Sequestration With Enhanced Gas Recovery: Identifying Candidate Sites for Pilot Study
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
.
25.
Oldenburg
,
C. M.
,
Stevens
,
S. H.
, and
Benson
,
S. M.
,
2004
, “
Economic Feasibility of Carbon Sequestration With Enhanced Gas Recovery (CSEGR)
,”
Energy
,
29
(
9–10
), pp.
1413
1422
.
26.
Oldenburg
,
C. M.
,
2003
,
Carbon Sequestration in Natural Gas Reservoirs: Enhanced gas Recovery and Natural Gas Storage
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
.
27.
Rebscher
,
D.
, and
Oldenburg
,
C. M.
,
2005
,
Sequestration of Carbon Dioxide With Enhanced Gas Recovery-Case Study Altmark, North German Basin
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
.
28.
Clemens
,
T.
, and
Wit
,
K.
,
2002
, “
CO2 Enhanced Gas Recovery Studied for an Example Gas Reservoir
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 29–Oct. 2
.
29.
Jikich
,
S. A.
,
Smith
,
D. H.
,
Sams
,
W. N.
, and
Bromhal
,
G. S.
,
2003
, “
Enhanced Gas Recovery (EGR) With Carbon Dioxide Sequestration: A Simulation Study of Effects of Injection Strategy and Operational Parameters
,”
SPE Eastern Regional Meeting
,
Pittsburgh, PA
,
Sept. 6–10
.
30.
Hou
,
Z.
,
Gou
,
Y.
,
Taron
,
J.
,
Gorke
,
U. J.
, and
Kolditz
,
O.
,
2012
, “
Thermo-hydro-mechanical Modeling of Carbon Dioxide Injection for Enhanced Gas-Recovery (CO2-EGR): A Benchmarking Study for Code Comparison
,”
Environ. Earth Sci.
,
67
(
2
), pp.
549
561
.
31.
Luo
,
F.
,
Xu
,
R.-N.
, and
Jiang
,
P.-X.
,
2013
, “
Numerical Investigation of the Influence of Vertical Permeability Heterogeneity in Stratified Formation and of Injection/Production Well Perforation Placement on CO2 Geological Storage With Enhanced CH4 Recovery
,”
Appl. Energy
,
102
, pp.
1314
1323
.
32.
Zhang
,
Z.
, and
Agarwal
,
R.
,
2013
, “
Numerical Simulation and Optimization of CO2 Sequestration in Saline Aquifers
,”
Comput. Fluids
,
80
, pp.
79
87
.
33.
Janiga
,
D.
,
Czarnota
,
R.
,
Stopa
,
J.
, and
Wojnarowski
,
P.
,
2019
, “
Self-Adapt Reservoir Clusterization Method to Enhance Robustness of Well Placement Optimization
,”
J. Pet. Sci. Eng.
,
173
, pp.
37
52
.
34.
Forouzanfar
,
F.
, and
Reynolds
,
A. C.
,
2013
, “
Well-Placement Optimization Using a Derivative-Free Method
,”
J. Pet. Sci. Eng.
,
109
, pp.
96
116
.
35.
Datta
,
D.
, and
Figueira
,
J. R.
,
2011
, “
A Real-Integer-Discrete-Coded Particle Swarm Optimization for Design Problems
,”
Appl. Soft Comput.
,
11
(
4
), pp.
3625
3633
.
36.
Liu
,
Y.
,
Chen
,
S.
,
Guan
,
B.
, and
Xu
,
P.
,
2019
, “
Layout Optimization of Large-Scale Oil–Gas Gathering System Based on Combined Optimization Strategy
,”
Neurocomput.
,
332
, pp.
159
183
.
37.
Naderi
,
M.
, and
Khamehchi
,
E.
,
2017
, “
Placement Optimization Using Metaheuristic Bat Algorithm
,”
J. Pet. Sci. Eng.
,
150
, pp.
348
354
.
38.
Liu
,
D.
,
Agarwal
,
R.
, and
Li
,
Y.
,
2016
, “
Numerical Simulation and Optimization of CO2-Enhanced Water Recovery by Employing a Genetic Algorithm
,”
J. Clean. Prod.
,
133
, pp.
994
1007
.
39.
Safi
,
R.
,
Agarwal
,
R. K.
, and
Banerjee
,
S.
,
2016
, “
Numerical Simulation and Optimization of CO2 Utilization for Enhanced Oil Recovery From Depleted Reservoirs
,”
Chem. Eng. Sci.
,
144
, pp.
30
38
.
40.
Biagi
,
J.
,
Agarwal
,
R.
, and
Zhang
,
Z.
,
2016
, “
Simulation and Optimization of Enhanced Gas Recovery Utilizing CO2
,”
Energy
,
94
, pp.
78
86
.
41.
Liu
,
S.
,
Agarwal
,
R.
,
Sun
,
B.
,
Wang
,
B.
,
Li
,
H.
,
Xu
,
Jianchun
, and
Fu
,
G.
,
2021
, “
Numerical Simulation and Optimization of Injection Rates and Wells Placement for Carbon Dioxide Enhanced Gas Recovery Using a Genetic Algorithm
,”
J. Cleaner Prod.
,
280
, pp.
124512
.
42.
Class
,
H.
,
Ebigbo
,
A.
,
Helmig
,
R.
,
Dahle
,
H. K.
,
Nordbotten
,
J. M.
,
Celia
,
M. A.
,
Audigane
,
P.
, et al
,
2009
, “
A Benchmark Study on Problems Related to CO2 Storage in Geologic Formations
,”
Comput. Geosci.
,
13
(
4
), pp.
409
434
.
43.
Seo
,
J. G.
, and
Mamora
,
D. D.
,
2005
, “
Experimental and Simulation Studies of Sequestration of Supercritical Carbon Dioxide in Depleted Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
1
6
.
44.
Fan
,
L.
,
Tan
,
Q.
,
Li
,
H.
,
Xu
,
J.
,
Wang
,
X.
, and
Liu
,
S.
,
2021
, “
Simulation on Effects of Injection Parameters on CO 2 Enhanced Gas Recovery in a Heterogeneous Natural Gas Reservoir
,”
Adv. Theory Simul.
,
4
(
8
), p.
2100127
.
45.
Hughes
,
T. J.
,
Honari
,
A.
,
Graham
,
B. F.
,
Chauhan
,
A. S.
,
Johns
,
M. L.
, and
May
,
E. F.
,
2012
, “
CO2 Sequestration for Enhanced Gas Recovery: New Measurements of Supercritical CO2–CH4 Dispersion in Porous Media and a Review of Recent Research
,”
Int. J. Greenhouse Gas Control
,
9
, pp.
457
468
.
46.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
47.
Setzmann
,
U.
, and
Wagner
,
W.
,
1991
, “
A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range From the Melting Line to 625 K at Pressures up to 100 MPa
,”
J. Phys. Chem. Ref. Data
,
20
(
6
), pp.
1061
1155
.
49.
World-Bank-Group
,
2020
, State and Trends of Carbon Pricing 2020, Washington, DC. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/191801559846379845/state-and-trends-of-carbon-pricing-20192019, Accessed April 3, 2020.
50.
Guo
,
J.-X.
, and
Huang
,
C.
,
2020
, “
Feasible Roadmap for CCS Retrofit of Coal-Based Power Plants to Reduce Chinese Carbon Emissions by 2050
,”
Appl. Energy
,
259
, p.
114112
.
51.
Kearns
,
D.
,
Liu
,
H.
, and
Consoli
,
C.
,
2021
,
Technology Readiness and Costs of CCS
,
Global CCS Institute
,
Online
.
You do not currently have access to this content.