Abstract

This study presents a laboratory experimental research to determine the characteristics of lost circulation materials (LCMs) capable of addressing thermal degradation, providing bridging and sealing in geothermal conditions. Eleven different materials were tested: Walnut Fine, Walnut Medium, Sawdust, Altavert, Graphite Blend, Bentonite Chips, Micronized Cellulose (MICRO-C), Magma Fiber Fine, diatomaceous earth/amorphous silica powder (DEASP), Cotton Seed Hulls, and a Calcium Carbonate Blend. The filtration and sealing pressure of the LCMs were measured with HPHT equipment up to 149 °C (300 °F). Besides, the particle size distribution (PSD) of fine granular materials was measured. The results show that the performance of some LCM materials commonly used in geothermal operations is affected by high temperature. Characteristics such as shape and size made some materials more prone to thermal degradation. Also, it was found that the PSD of LCMs is a key factor in the effectiveness of bridging and sealing fractures. The results suggest that granular materials with a wide particle size distribution PSD are suitable for geothermal applications.

References

1.
Hinkebein
,
T. E.
,
Behr
,
V. L.
, and
Wilde
,
S. L.
,
1983
,
Static Slot Testing of Conventional Lost Circulation Materials
,
Sandia National Labs
,
Albuquerque, NM
.
2.
Meng
,
M.
,
Chen
,
P.
, and
Ren
,
R.
,
2019
, “
Statistic Evaluation of Failure Criteria in Wellbore Stability With Temperature Effects
,”
Fuel
,
252
(
9
), pp.
730
752
.
3.
Shi
,
Y.
,
Song
,
X.
,
Li
,
J.
,
Wang
,
G.
,
Zheng
,
R.
, and
YuLong
,
F.
,
2019
, “
Numerical Investigation on Heat Extraction Performance of a Multilateral-Well Enhanced Geothermal System With a Discrete Fracture Network
,”
Fuel
,
244
(
5
), pp.
207
226
.
4.
Ezeakacha
,
C. P.
, and
Salehi
,
S.
,
2019
, “
A Holistic Approach to Characterize Mud Loss Using Dynamic Mud Filtration Data
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072903
.
5.
Wagle
,
V.
,
Kalgaonkar
,
R.
,
AlYami
,
A.
, and
AlKhalaf
,
S.
,
2021
, “
Nanosilica-Based Loss Circulation Composition to Cure Moderate to Severe Losses
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
103002
.
6.
Vivas
,
C.
,
Salehi
,
S.
,
Tuttle
,
J. D.
, and
Rickard
,
B.
,
2020
, “
Challenges and Opportunities of Geothermal Drilling for Renewable Energy Generation
,”
GRC 2020 Virtual Annual Meeting & Expo
,
Virtual Meeting
,
Oct. 18–23
, pp.
904
918
.
7.
Magzoub
,
M. I.
,
Salehi
,
S.
,
Hussein
,
I.
, and
Nasser
,
M.
,
2021
, “
Development of a Polyacrylamide-Based Mud Formulation for Loss Circulation Treatments
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073001
.
8.
Cole
,
P.
,
Young
,
K.
,
Doke
,
C.
,
Duncan
,
N.
, and
Eustes
,
B.
,
2017
, “
Geothermal Drilling: a Baseline Study of Nonproductive Time Related to Lost Circulation
,”
Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering
,
Stanford, CA
, pp.
13
15
.
9.
Snyder
,
N. K.
,
Visser
,
C. F.
,
Alfred
,
E. I.
,
Baker
,
W.
,
Tucker
,
J.
,
Quick
,
R.
, and
Nagle
,
T.
,
2018
,
Geothermal Drilling and Completions: Petroleum Practices Technology Transfer
,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
10.
Marbun
,
B.
,
Aristya
,
R.
,
Pinem
,
H. R.
,
Ramli
,
S. B.
, and
Gadi
,
B. K.
,
2013
, “
Evaluation of Non Productive Time of Geothermal Drilling Operations—Case Study in Indonesia
,”
Thirty-Eighth Workshop on Geothermal Reservoir Engineering
,
Stanford University
,
Stanford, CA
,
Feb. 11–13
, p.
8
.
11.
Pálsson
,
B.
,
Hólmgeirsson
,
S.
,
Guðmundsson
,
Á
,
Bóasson
,
,
Ingason
,
K.
,
Sverrisson
,
H.
, and
Thórhallsson
,
S.
,
2014
, “
Drilling of the Well IDDP-1
,”
Geothermics
,
49
(
1
), pp.
23
30
.
12.
Bolton
,
R. S.
,
Hunt
,
T. M.
,
King
,
T. R.
, and
Thompson
,
G. E. K.
,
2009
, “
Dramatic Incidents During Drilling at Wairakei Geothermal Field, New Zealand
,”
Geothermics
,
38
(
1
), pp.
40
47
.
13.
Liles
,
K. J.
,
Sadler
,
L. Y.
, and
Goode
,
A. H.
,
1976
,
Geothermal Well Drilling Fluid Technology: A Literature Survey
,
National Technical Reports Library—NTIS
.
14.
Cromling
,
J.
,
1973
, “
Geothermal Drilling in California
,”
J. Pet. Technol.
,
25
(
9
), pp.
1033
8
.
15.
Nuckols
,
E. B.
,
Miles
,
D.
,
Laney
,
R.
,
Polk
,
G.
,
Friddle
,
H.
, and
Simpson
,
G.
,
1981
, “
Drilling Fluids and Lost Circulation in Hot Dry Rock Geothermal Wells at Fenton Hill
,”
International Geothermal Drilling and Completions Technology Conference
,
Albuquerque, NM
,
Jan. 21
.
16.
Goodman
,
M. A.
,
1981
,
Lost Circulation in Geothermal Wells: Survey and Evaluation of Industry Experience
,
United States
.
17.
Hyodo
,
M.
,
Kitao
,
K.
, and
Furukawa
,
T.
,
2000
, “
Development of Database System for Lost Circulation and Analysis of the Data
,”
World Geothermal Congress
,
Kyushu–Tohoku, Japan
,
May 28–June 10
.
18.
Caenn
,
R.
,
Darley
,
H. C. H.
, and
Gray
,
G. R.
,
2016
,
Composition and Properties of Drilling and Completion Fluids
, Seventh Ed.,
Gulf professional publishing
,
Cambridge, MA
.
19.
Howard
,
G. C.
, and
Scott
,
P. P.
,
1951
, “
An Analysis and the Control of Lost Circulation
,”
J. Pet. Technol.
,
3
(
6
), pp.
171
182
.
20.
Lavrov
,
A.
,
2016
,
Lost Circulation: Mechanisms and Solutions
,
Elsevier Inc
.
21.
Abrams
,
A.
,
1977
, “
Mud Design To Minimize Rock Impairment Due To Particle Invasion
,”
J. Pet. Technol.
,
29
(
5
), pp.
586
592
.
22.
Alsaba
,
M.
,
Al Dushaishi
,
M. F.
,
Nygaard
,
R.
,
Nes
,
O. M.
, and
Saasen
,
A.
,
2017
, “
Updated Criterion to Select Particle Size Distribution of Lost Circulation Materials for an Effective Fracture Sealing
,”
J. Pet. Sci. Eng.
,
149
, pp.
641
648
.
23.
Smith
,
P. S.
,
Browne
,
S. V.
,
Heinz
,
T. J.
, and
Wise
,
W. V.
,
1996
, “
Drilling Fluid Design to Prevent Formation Damage in High Permeability Quartz Arenite Sandstones
,”
SPE’s Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 6–9
, Society of Petroleum Engineers.
24.
Hands
,
N.
,
Kowbel
,
K.
,
Maikranz
,
S.
, and
Nouris
,
R.
,
1998
, “
Drill-in Fluid Reduces Formation Damage, Increases Production Rates
,”
Oil Gas J.
,
96
(
7
).
25.
Vickers
,
S.
,
Cowie
,
M.
,
Jones
,
T.
, and
Twynam
,
A. J.
,
2006
, “
A new Methodology That Surpasses Current Bridging Theories to Efficiently Seal a Varied Pore Throat Distribution as Found in Natural Reservoir Formations
,”
AADE Drilling Fluids Technical Conference
,
Houston, TX
,
Apr. 11–12
.
26.
Whitfill
,
D.
,
2008
, “
Lost Circulation Material Selection, Particle Size Distribution and Fracture Modeling with Fracture Simulation Software
,”
IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Jakarta, Indonesia
,
Aug. 25–27
, Society of Petroleum Engineers.
27.
Salehi
,
S.
, and
Nygaard
,
R.
,
2011
, “
Evaluation of new Drilling Approach for Widening Operational Window: Implications for Wellbore Strengthening
,”
SPE Production Operations Symposium
,
Oklahoma City, OK
,
Mar. 27–29
.
28.
Magzoub
,
M. I.
,
Salehi
,
S.
,
Hussein
,
I. A.
, and
Nasser
,
M. S.
,
2020
, “
Loss Circulation in Drilling and Well Construction: The Significance of Applications of Crosslinked Polymers in Wellbore Strengthening: A Review
,”
J. Pet. Sci. Eng.
,
185
(
2
), p.
106653
.
29.
Alberty
,
M. W.
, and
McLean
,
M. R.
,
2004
, “
A Physical Model for Stress Cages
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
, pp.
2867
2874
.
30.
Dupriest
,
F. E.
,
2005
, “
Fracture Closure Stress (FCS) and Lost Returns Practices
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 23–25
.
31.
Morita
,
N.
,
Fuh
,
G. F.
, and
Black
,
A. D.
,
1996
, “
Borehole Breakdown Pressure with Drilling Fluids—II. Semi-Analytical Solution to Predict Borehole Breakdown Pressure
,”
Int. J. Rock Mech. Min. Sci. Geomech.
,
33
(
1
), pp.
53
69
.
32.
Savari
,
S.
,
Whitfill
,
D. L.
,
Jamison
,
D. E.
, and
Kumar
,
A.
,
2014
, “
A Method to Evaluate Lost Circulation Materials-Investigation of Effective Wellbore Strengthening Applications
,”
SPE/IADC Drilling Conference Proceedings
, Vol.
1
,
Society of Petroleum Engineers (SPE)
, pp.
538
544
.
33.
Ezeakacha
,
C. P.
,
Salehi
,
S.
, and
Hayatdavoudi
,
A.
,
2017
, “
Experimental Study of Drilling Fluid’s Filtration and Mud Cake Evolution in Sandstone Formations
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022912
.
You do not currently have access to this content.