Abstract

The proppant distribution significantly affects the conductivity of fracture networks. However, the law of proppant transport in fracture networks is still unclear, and the influence of fracture scale on the proppant distribution has not been determined. Thus, in the present study, the influence of fracture scale was investigated, and the influences of approaching angle and width ratio on fluid split ratio were analyzed. An Eulerian–Eulerian model was utilized to simulate suspended proppant and bed load proppant migration in fracture junctions. Then, a sensitivity analysis was carried out to evaluate the parameters that may affect the proppant distribution pattern, such as injection velocity, fluid viscosity, and proppant density. The results show that the approaching angle and width ratio significantly influence the fluid split ratio in a small-scale fracture. Moreover, the effect of the approaching angle decreases with an increase in the fracture scale. The split ratio of suspended proppant increases with increasing sand ratio, fluid split ratio, and width ratio. The split ratio of bed load proppant increases with increasing injection rate, fluid viscosity, width ratio, fluid split ratio, and decreasing proppant diameter. In small-scale fracture junctions, the approaching angle affects the split ratio of suspended proppant or bed load proppant by influencing the fluid split ratio; however, the effect is inconspicuous in large-scale fractures. The increase in fluid split ratio with the fracture scale leads to an increase in the split ratio of suspended proppant or bed load proppant.

References

1.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
2.
Osholake
,
T.
,
Yilin Wang
,
J.
, and
Ertekin
,
T.
,
2012
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
3.
Meng
,
X.
, and
Wang
,
J.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
.
4.
Mack
,
M.
,
Sun
,
J.
, and
Khadilkar
,
C.
,
2014
, “
Quantifying Proppant Transport in Thin Fluids: Theory and Experiments
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 4–6
, SPE Paper No. SPE-168637-MS.
5.
Baldini
,
M.
,
Carlevaro
,
C. M.
,
Pugnaloni
,
L. A.
, and
SáNchez
,
M.
,
2018
, “
Numerical Simulation of Proppant Transport in a Planar Fracture. A Study of Perforation Placement and Injection Strategy
,”
Int. J. Multiphase Flow
,
109
, pp.
207
218
.
6.
Chang
,
O.
,
Kinzel
,
M.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2018
, “
Physics of Proppant Transport Through Hydraulic Fracture Network
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032912
.
7.
Clark
,
P.
, and
Quadir
,
J.
,
1981
, “
Prop Transport in Hydraulic Fractures: A Critical Review of Particle Settling Velocity Equations
,”
J. Mol. Biol.
,
377
(
5
), pp.
1607
1617
.
8.
Coker
,
C. E.
, and
Mack
,
M. G.
,
2013
, “
Proppant Selection for Shale Reservoirs: Optimizing Conductivity, Proppant Transport and Cost
,”
SPE Unconventional Resources Conference Canada
,
Calgary, AB, Canada
,
Nov. 5–7
,
Society of Petroleum Engineers
, SPE Paper No. SPE-167221-MS.
9.
Kou
,
R.
,
Moridis
,
G. J.
, and
Blasingame
,
T. A.
,
2018
, “
Analysis and Modeling of Proppant Transport in Inclined Hydraulic Fractures
,”
SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Jan. 23–25
,
Society of Petroleum Engineers
, SPE Paper No. SPE-189856-MS.
10.
Li
,
M.
,
Liu
,
C.
, and
Zhang
,
G.
,
2020
, “
Calibration of the Interaction Parameters Between the Proppant and Fracture Wall and the Effects of These Parameters on Proppant Distribution
,”
Energies
,
13
(
8
), p.
2099
.
11.
Mobbs
,
A. T.
, and
Hammond
,
P. S.
,
2001
, “
Computer Simulations of Proppant Transport in a Hydraulic Fracture
,”
SPE Prod. Facil.
,
16
(
02
), pp.
112
121
.
12.
Sahai
,
R.
,
Miskimins
,
J. L.
, and
Olson
,
K. E.
,
2014
, “
Laboratory Results of Proppant Transport in Complex Fracture Systems
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 4–6
,
Society of Petroleum Engineers
, SPE Paper No. SPE168579-MS.
13.
Tomac
,
I.
, and
Gutierrez
,
M.
,
2015
, “
Micromechanics of Proppant Agglomeration During Settling in Hydraulic Fractures
,”
J. Pet. Explor. Prod. Technol.
,
5
(
4
), pp.
417
434
.
14.
Tsai
,
K.
,
Degaleesan
,
S. S.
,
Fonseca
,
E. R.
, and
Lake
,
E.
,
2012
, “
Advanced Computational Modeling of Proppant Settling in Water Fractures for Shale Gas Production
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 6–8
,
Society of Petroleum Engineers
, SPE Paper No. SPE151607-PA.
15.
Wang
,
L.
, and
Wen
,
H.
,
2020
, “
Experimental Investigation on the Factors Affecting Proppant Flowback Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053001
.
16.
Kern
,
L. R.
,
Perkins
,
T. K.
, and
Wyant
,
R. E.
,
1959
, “
The Mechanics of Sand Movement in Fracturing
,”
J. Pet. Technol.
,
11
(
07
), pp.
55
57
.
17.
Acharya
,
A. R.
,
1986
, “
Particle Transport in Viscous and Viscoelastic Fracturing Fluids
,”
SPE Prod. Eng.
,
1
(
02
), pp.
104
110
.
18.
Boger
,
D.
,
1996
, “
Viscoelastic Fluid Mechanics: Interaction Between Prediction and Experiment
,”
Exp. Therm. Fluid. Sci.
,
12
(
2
), pp.
234
243
.
19.
Chmielewski
,
C.
,
Nichols
,
K.
, and
Jayaraman
,
K.
,
1990
, “
A Comparison of the Drag Coefficients of Spheres Translating in Corn-Syrup-Based and Polybutene-Based Boger Fluids
,”
J. Non-Newtonian Fluid Mech.
,
35
(
1
), pp.
37
49
.
20.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
2005
,
Bubbles, Drops, and Particles
,
Dover Publications, Inc.
,
Mineola, NY
.
21.
DeKee
,
D.
,
2002
,
Transport Processes in Bubbles, Drops and Particles
,
CRC Press
,
Boca Raton, FL
.
22.
Zhang
,
G.
,
Li
,
M.
,
Li
,
J.
,
Yu
,
M.
,
Qi
,
M.
, and
Bai
,
Z.
,
2015
, “
Wall Effects on Spheres Settling Through Non-Newtonian Fluid Media in Cylindrical Tubes
,”
J. Dispersion Sci. Technol.
,
36
(
9
), pp.
1199
1207
.
23.
Cohen
,
C.-E.
,
Xu
,
W.
,
Weng
,
X.
, and
Tardy
,
P. M. J.
,
2012
, “
Production Forecast After Hydraulic Fracturing in Naturally Fractured Reservoirs: Coupling a Complex Fracturing Simulator and a Semi-Analytical Production Model
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 6–8
,
Society of Petroleum Engineers
, SPE Paper No. SPE-152541-MS.
24.
Han
,
J.
,
Yuan
,
P.
,
Huang
,
X.
,
Zhang
,
H.
,
Sookprasong
,
A.
,
Li
,
C.
, and
Dai
,
Y.
,
2016
, “
Numerical Study of Proppant Transport in Complex Fracture Geometry
,”
SPE Low Perm Symposium
,
Denver, CO
,
May 5–6
,
Society of Petroleum Engineers
, SPE Paper No. SPE-180243-MS.
25.
Song
,
Y.
, and
Taleghani
,
A. D.
,
2021
, “
Numerical Simulation of Proppant Placement in Scaled Fracture Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043004
.
26.
Li
,
N.
,
Li
,
J.
,
Zhao
,
L.
,
Luo
,
Z.
,
Liu
,
P.
, and
Guo
,
Y.
,
2016
, “
Laboratory Testing and Numeric Simulation on Laws of Proppant Transport in Complex Fracture Systems
,”
SPE Asia Pacific Hydraulic Fracturing Conference
,
Beijing, China
,
Aug. 24–26
,
Society of Petroleum Engineers
, SPE Paper No. SPE-181822-MS.
27.
Tong
,
S.
, and
Mohanty
,
K. K.
,
2016
, “
Proppant Transport Study in Fractures With Intersections
,”
Fuel
,
181
, pp.
463
477
.
28.
Kong
,
X.
, and
McAndrew
,
J.
,
2017
, “
A Computational Fluid Dynamics Study of Proppant Placement in Hydraulic Fracture Networks
,”
SPE Unconventional Resources Conference
,
Calgary, AB, Canada
,
Feb. 15–16
,
Society of Petroleum Engineers
, SPE Paper No. SPE-185083-MS.
29.
Adachi
,
J.
,
Siebrits
,
E.
,
Peirce
,
A.
, and
Desroches
,
J.
,
2007
, “
Computer Simulation of Hydraulic Fractures
,”
Int. J. Rock Mech. Min. Sci.
,
44
(
5
), pp.
739
757
.
30.
Yang
,
R.
,
Guo
,
J.
,
Zhang
,
T.
,
Zhang
,
X.
,
Ma
,
J.
, and
Li
,
Y.
,
2019
, “
Numerical Study on Proppant Transport and Placement in Complex Fractures System of Shale Formation Using Eulerian Multiphase Model Approach
,”
International Petroleum Technology Conference, International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
, Paper No. IPTC-19090-MS.
31.
Blyton
,
C. A. J.
,
Gala
,
D. P.
, and
Sharma
,
M. M.
,
2015
, “
A Comprehensive Study of Proppant Transport in a Hydraulic Fracture
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 28–30
,
Society of Petroleum Engineers
, SPE Paper No. SPE-174973-MS.
32.
Kou
,
R.
,
Moridis
,
G.
, and
Blasingame
,
T.
,
2019
, “
Bridging Criteria and Distribution Correlation for Proppant Transport in Primary and Secondary Fracture
,”
SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Feb. 5–7
,
Society of Petroleum Engineers
, SPE Paper No. SPE-194319-MS.
33.
Snider
,
D. M.
,
2001
, “
An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
J. Comput. Phys.
,
170
(
2
), pp.
523
549
.
34.
Zhang
,
G.
,
Gutierrez
,
M.
, and
Li
,
M.
,
2017
, “
A Coupled CFD-DEM Approach to Model Particle-Fluid Mixture Transport Between Two Parallel Plates to Improve Understanding of Proppant Micromechanics in Hydraulic Fractures
,”
Powder Technol.
,
308
, pp.
235
248
.
35.
Zhang
,
G.
,
Gutierrez
,
M.
, and
Li
,
M.
,
2017
, “
Numerical Simulation of Transport and Placement of Multi-Sized Proppants in a Hydraulic Fracture in Vertical Wells
,”
Granular Matter
,
19
(
2
), p.
32
.
36.
Jianchun
,
G.
,
Wei
,
L.
, and
Tao
,
Z.
,
2014
, “
CFD Simulation of Proppant Transportation and Settling in Water Fracture Treatments
,”
J. Southwest Pet. Univ.
,
36
(
1
), pp.
74
82
.
37.
Mou
,
B.
,
He
,
B. J.
,
Zhao
,
D. X.
, and
Chau
,
K.
,
2017
, “
Numerical Simulation of the Effects of Building Dimensional Variation on Wind Pressure Distribution
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
293
309
.
38.
Tomor
,
A.
, and
Kristof
,
G.
,
2018
, “
Junction Losses for Arbitrary Flow Directions
,”
ASME J. Fluids Eng.
,
140
(
4
), p.
041104
.
39.
Miller
,
D.
,
1971
,
A Guide to Losses in Pipe and Duct Systems
,
The British Hydromechanics Research Association
,
Milton Keynes, UK
.
40.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
,
Hemisphere Publishing Corporation
,
Washington, DC
, p.
662
.
You do not currently have access to this content.