Abstract

Thermoelectric power generators (TEGs) have been attracted increasing attention due to their capability of converting waste heat into useful electric energy without hazardous emissions. Many theoretical models to conduct their performance analysis are developed based on the generalized heat transport theory. However, most of them are assumed that the TEGs are thermally isolate from the surroundings except for the heat exchange at hot and cold reservoirs. This paper develops a theoretical model to study the performance of TEGs with cylindrical legs, and the influence of convective heat loss between lateral surfaces of legs and ambient environment is considered. Analytical solutions for temperature distribution inside the TEG, power output and energy conversion efficiency are obtained by using eigenfunction expansion method. A new dimensionless impact factor H is introduced to capture the convective heat effect, and the maximum energy conversion efficiency can be evaluated by the figure of merit, impact factor H and temperature ratio of heat sink to hot source for a well-designed TEG. There exists an optimal leg’s height for maximum energy conversion efficiency when the convective heat loss on lateral surfaces of thermoelectric legs and electrode thermal resistance are considered. The conclusions provided in this paper will be very helpful in the designing of high-performance TEG devices.

References

1.
Rowe
,
D.
,
1995
,
CRC Handbook of Thermoelectrics
,
CRC Press
,
Boca Raton, FL
.
2.
Yu
,
C.
, and
Chau
,
K. T.
,
2009
, “
Thermoelectric Automotive Waste Heat Energy Recovery Using Maximum Power Point Tracking
,”
Energ. Convers. Manage.
,
50
(
6
), pp.
1506
1512
.
3.
Tritt
,
T. M.
,
Boettner
,
H.
, and
Chen
,
L.
,
2008
, “
Thermoelectrics: Direct Solar Thermal Energy Conversion
,”
MRS Bull.
,
33
(
4
), pp.
366
368
.
4.
Lan
,
S.
,
Yang
,
Z.
,
Chen
,
R.
, and
Stobart
,
R.
,
2018
, “
A Dynamic Model for Thermoelectric Generator Applied to Vehicle Waste Heat Recovery
,”
Appl. Energ.
,
210
, pp.
327
338
.
5.
Orr
,
B.
,
Akbarzadeh
,
A.
, and
Lappas
,
P.
,
2017
, “
An Exhaust Heat Recovery System Utilizing Thermoelectric Generators and Heat Pipes
,”
Appl. Therm. Eng.
,
126
, pp.
1185
1190
.
6.
Kim
,
S. J.
,
We
,
J. H.
, and
Cho
,
B. J.
,
2014
, “
A Wearable Thermoelectric Generator Fabricated on a Glass Fabric
,”
Energ. Environ. Sci.
,
7
, pp.
1959
1965
.
7.
Zhang
,
A. B.
,
Li
,
G. Y.
,
Wang
,
B. L.
, and
Wang
,
J.
,
2021
, “
A Theoretical Model for Wearable Thermoelectric Generators Considering the Effect of Human Skin
,”
J. Electron. Mater.
,
50
(
3
), pp.
1514
1526
.
8.
Wen
,
Z. F.
,
Sun
,
Y.
,
Zhang
,
A. B.
,
Wang
,
B. L.
,
Wang
,
J.
, and
Du
,
J. K.
,
2020
, “
Performance Analysis of a Segmented Annular Thermoelectric Generator
,”
J. Electron. Mater.
,
49
(
8
), pp.
4830
4842
.
9.
He
,
Z. H.
,
2020
, “
A Coupled Electrical-Thermal Impedance Matching Model for Design Optimization of Thermoelectric Generator
,”
Appl. Energy
,
269
, p.
115037
.
10.
Jin
,
Z. H.
,
2019
, “
Energy Efficiency of Thermoelectric Materials: A Three-Dimensional Study
,”
J. Appl. Phys.
,
126
(
8
), p.
85108
.
11.
Das
,
R.
, and
Kundu
,
B.
,
2019
, “
Forward and Inverse Nonlinear Heat Transfer Analysis for Optimization of a Constructal T-Shape fin Under dry and wet Conditions
,”
Int. J. Heat Mass Transfer
,
137
, pp.
461
475
.
12.
Singla
,
R. K.
, and
Das
,
R.
,
2015
, “
Adomian Decomposition Method for a Stepped fin with all Temperature-Dependent Modes of Heat Transfer
,”
Int. J. Heat Mass Transfer
,
82
, pp.
447
459
.
13.
Yin
,
T.
, and
He
,
Z. Z.
,
2021
, “
Analytical Model-Based Optimization of the Thermoelectric Cooler with Temperature-Dependent Materials Under Different Operating Conditions
,”
Appl. Energy
,
299
, p.
117340
.
14.
Kumar
,
A.
,
Singh
,
K.
,
Verma
,
S.
, and
Das
,
R.
,
2018
, “
Inverse Prediction and Optimization Analysis of a Solar Pond Powering a Thermoelectric Generator
,”
Sol. Energy
,
169
, pp.
658
672
.
15.
Goldsmid
,
H. J.
,
2009
,
Introduction to Thermoelectricity
,
Springer
,
Heidelbery
.
16.
Zhang
,
A. B.
,
Wang
,
B. L.
,
Pang
,
D. D.
,
He
,
L. W.
,
Lou
,
J.
,
Wang
,
J.
, and
Du
,
J. K.
,
2018
, “
Effects of Interface Layers on the Performance of Annular Thermoelectric Generators
,”
Energy
,
147
, pp.
612
620
.
17.
Zhang
,
A. B.
,
Wang
,
B. L.
,
Pang
,
D. D.
,
Chen
,
J. B.
,
Wang
,
J.
, and
Du
,
J. K.
,
2018
, “
Influence of Leg Geometry Configuration and Contact Resistance on the Performance of Annular Thermoelectric Generators
,”
Energ. Convers. Manage.
,
166
(
Jun.
), pp.
337
342
.
18.
Shen
,
Z. G.
,
Wu
,
S. Y.
,
Xiao
,
L.
, and
Yin
,
G.
,
2016
, “
Theoretical Modeling of Thermoelectric Generator with Particular Emphasis on the Effect of Side Surface Heat Transfer
,”
Energy
,
95
, pp.
367
379
.
19.
Xiao
,
H.
,
Gou
,
X.
, and
Yang
,
S.
,
2011
, “
Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System
,”
J. Electron. Mater.
,
40
(
5
), pp.
1195
1201
.
20.
Pang
,
D.
,
Zhang
,
A.
,
Wang
,
B. L.
, and
Li
,
G.
,
2019
, “
Theoretical Analysis of the Thermoelectric Generator Considering Surface to Surrounding Heat Convection and Contact Resistance
,”
J. Electron. Mater.
,
48
(
1
), pp.
596
602
.
21.
Wang
,
P.
,
Wang
,
K. F.
,
Wang
,
B. L.
, and
Cui
,
Y. J.
,
2019
, “
Modeling of Thermoelectric Generators with Effects of Side Surface Heat Convection and Temperature Dependence of Material Properties
,”
Int. J. Heat Mass Transfer
,
133
, pp.
1145
1153
.
22.
Massaguer
,
A.
,
Massaguer
,
E.
,
Comamala
,
M.
,
Pujol
,
T.
,
Gonzalez
,
J. R.
,
Cardenas
,
M. D.
,
Carbonell
,
D.
, and
Bueno
,
A. J.
,
2018
, “
A Method to Assess the Fuel Economy of Automotive Thermoelectric Generators
,”
Appl. Energy
,
222
, pp.
42
58
.
23.
Zhao
,
Y. L.
,
Wang
,
S. X.
,
Ge
,
M. H.
,
Liang
,
Z. J.
,
Liang
,
Y. F.
, and
Li
,
Y. Z.
,
2018
, “
Performance Analysis of Automobile Exhaust Thermoelectric Generator System with Media Fluid
,”
Energ. Conver. Manage.
,
171
, pp.
427
437
.
24.
Cao
,
Q. M.
,
Luan
,
W. L.
, and
Wang
,
T. C.
,
2018
, “
Performance Enhancement of Heat Pipes Assisted Thermoelectric Generator for Automobile Exhaust Heat Recovery
,”
Appl. Therm. Eng.
,
130
, pp.
1472
1479
.
25.
Hahn
,
D. W.
, and
Özişik
,
M. N.
,
2012
,
Heat Conduction
, 3rd ed.,
John Wiley & Sons Inc
,
Hoboken, NJ
.
26.
Suhir
,
E.
, and
Shakouri
,
A.
,
2012
, “
Assembly Bonded at the Ends: Could Thinner and Longer Legs Result in a Lower Thermal Stress in a Thermoelectric Module Design
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061010
.
27.
Zhang
,
A.
, and
Wang
,
B.
,
2016
, “
Temperature and Electric Potential Fields of an Interface Crack in a Layered Thermoelectric or Metal/Thermoelectric Material
,”
Int. J. Therm. Sci.
,
104
, pp.
396
403
.
28.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons Incorporation
,
New York
.
29.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Experimental Analysis of a Novel Solar Pond Driven Thermoelectric Energy System
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121302
.
30.
Kumar
,
A.
,
Singh
,
K.
, and
Das
,
R.
,
2019
, “
Response Surface Based Experimental Analysis and Thermal Resistance Model of a Thermoelectric Power Generation System
,”
Appl. Therm. Eng.
,
159
, p.
113935
.
31.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Waste Heat Recovery From a Biomass Heat Engine for Thermoelectric Power Generation Using two-Phase Thermosyphons
,”
Renewable Energy
,
148
, pp.
1280
1291
.
32.
Snyder
,
G. J.
, and
Ursell
,
T. S.
,
2003
, “
Thermoelectric Efficiency and Compatibility
,”
Phys. Rev. Lett.
,
91
(
14
), p.
148301
.
33.
Snyder
,
G. J.
,
2004
, “
Application of the Compatibility Factor to the Design of Segmented and Cascaded Thermoelectric Generators
,”
Appl. Phys. Lett.
,
84
(
13
), pp.
2436
2438
.
You do not currently have access to this content.