Abstract

Liquid fuel jet in crossflow (LJIC) is a vital atomization technique significant to the aviation industry. The hydrodynamic instability mechanisms that drive a primary breakup of a transverse jet are investigated using modal and traveling wavelength analysis. This study highlights the primary breakup mechanisms for aviation fuel Jet-A, utilizing a method that could be applied to any liquid fuel. Mathematical decomposition techniques known as POD (proper orthogonal decomposition) and Robust MrDMD (multiresolution dynamic mode decomposition) are used together to identify dominant instability flow dynamics associated with the primary breakup mechanism. Implementation of the Robust MrDMD method deconstructs the nonlinear dynamical systems into multiresolution time-scaled components to capture the intermittent coherent structures. The Robust MrDMD, in conjunction with the POD method, is applied to data points taken across the entire spray breakup regimes: enhanced capillary breakup, bag breakup, multimode breakup, and shear breakup. The dominant frequencies of breakup mechanisms are extracted and identified. These coherent structures are classified with an associated time scale and Strouhal number. Three primary breakup mechanisms, namely, ligament shedding, bag breakup, and shear breakup, were identified and associated with the four breakup regimes outlined above. Further investigation portrays these breakup mechanisms to occur in conjunction with each other in each breakup regime, excluding the low Weber number enhanced capillary breakup regime. Spectral analysis of the Robust MrDMD modes’ entire temporal window reveals that while multiple breakup mechanisms are convolved, there is a dominant breakup route for each breakup regime. An associated particular traveling wavelength analysis further investigates each breakup mechanism. Lastly, this study explores the effects of an increased momentum flux ratio on each breakup mechanism associated with a breakup regime.

References

1.
Olyaei
,
G.
, and
Kebriaee
,
A.
,
2020
, “
Experimental Study of Liquid Jets Injected in Crossflow
,”
Exp. Therm. Fluid Sci.
,
115
(
Oct.
), p.
110049
.
2.
Gollahalli
,
S. R.
, and
Pardiwalla
,
D.
,
2002
, “
Comparison of the Flame Characteristics of Turbulent Circular and Elliptic Jets in a Crossflow
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
197
203
.
3.
Sharma
,
P.
,
Jain
,
N.
, and
Arghode
,
V. K.
,
2019
, “
Investigation of a Low Emission Liquid Fueled Reverse-Cross-Flow Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102202
.
4.
Stiehl
,
B.
,
Genova
,
T.
,
Otero
,
M.
,
Martin
,
S.
, and
Ahmed
,
K.
,
2021
, “
Fuel Stratification Influence on NOx Emission in a Premixed Axial Reacting Jet-in-Crossflow at High Pressure
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122303
.
5.
Broumand
,
M.
, and
Birouk
,
M.
,
2017
, “
Effect of Nozzle-Exit Conditions on the Near-Field Characteristics of a Transverse Liquid Jet in a Subsonic Uniform Cross Airflow
,”
Phys. Fluids
,
29
(
11
), p.
113303
.
6.
Arienti
,
M.
, and
Soteriou
,
M. C.
,
2009
, “
Time-Resolved Proper Orthogonal Decomposition of Liquid Jet Dynamics
,”
Phys. Fluids
,
21
(
11
), pp.
1
15
.
7.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1996
, “
Breakup Processes
of
Liquid Jets in Subsonic Crossflows
,”
32nd Joint Propulsion Conference Exhibit
,
Lake Buena Vista, FL
,
July 1–3
,
13
(
1
), pp.
1
14
.
8.
Madabhushi
,
R. K.
,
Leong
,
M. Y.
,
Arienti
,
M.
,
Brown
,
C. T.
, and
McDonell
,
V. G.
,
2006
, “
On the Breakup Regime Map of Liquid Jet in Crossflow
,”
19th Annu. Conf. Liq. At. Spray Syst.
,
Toronto, Canada
,
May
, pp.
23
26
.
9.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
,
2003
, “
Breakup
of
Round Nonturbulent Liquid Jets in Gaseous Crossflows
,”
41st Aerospace Sci. Meet. Exhibit
,
Reno, NV
,
Jan. 6–9
,
42
(
12
).
10.
Kulkarni
,
V.
, and
Sojka
,
P. E.
,
2014
, “
Bag Breakup of Low Viscosity Drops in the Presence of a Continuous Air Jet
,”
Phys. Fluids
,
26
(
7
), p.
072103
.
11.
Opfer
,
L.
,
Roisman
,
I. V.
,
Venzmer
,
J.
,
Klostermann
,
M.
, and
Tropea
,
C.
,
2014
, “
Droplet-Air Collision Dynamics: Evolution of the Film Thickness
,”
Phys. Rev. E—Stat. Nonlinear Soft Matter Phys.
,
89
(
1
), pp.
1
6
.
12.
Cao
,
X. K.
,
Sun
,
Z. G.
,
Li
,
W. F.
,
Liu
,
H. F.
, and
Yu
,
Z. H.
,
2007
, “
A New Breakup Regime of Liquid Drops Identified in a Continuous and Uniform Air Jet Flow
,”
Phys. Fluids
,
19
(
5
), p.
057103
.
13.
Ashgriz
,
N.
,
2012
, “
Atomization of a Liquid Jet in a Crossflow
,”
AIP Conf. Proc.
,
1440
(
Imat 2011
), pp.
33
46
.
14.
Broumand
,
M.
, and
Birouk
,
M.
,
2016
, “
Liquid Jet in a Subsonic Gaseous Crossflow: Recent Progress and Remaining Challenges
,”
Prog. Energy Combust. Sci.
,
57
, pp.
1
29
.
15.
Karagozian
,
A. R.
,
2014
, “
The Jet in Crossflow
,”
Phys. Fluids
,
26
(
10
), p.
101303
.
16.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.
17.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
(
May
), pp.
199
227
.
18.
Gopalan
,
S.
,
Abraham
,
B. M.
, and
Katz
,
J.
,
2004
, “
The Structure of a Jet in Cross Flow at Low Velocity Ratios
,”
Phys. Fluids
,
16
(
6
), pp.
2067
2087
.
19.
Chauvat
,
G.
,
Peplinski
,
A.
,
Henningson
,
D. S.
, and
Hanifi
,
A.
,
2020
, “
Global Linear Analysis of a Jet in Cross-Flow at Low Velocity Ratios
,”
J. Fluid Mech.
,
889
, pp.
A121
A1221
.
20.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.
21.
Schmid
,
P. J.
,
2011
, “
Application of the Dynamic Mode Decomposition to Experimental Data
,”
Exp. Fluids
,
50
(
4
), pp.
1123
1130
.
22.
Iyer
,
P. S.
, and
Mahesh
,
K.
,
2016
, “
A Numerical Study of Shear Layer Characteristics of Low-Speed Transverse Jets
,”
J. Fluid Mech.
,
790
, pp.
275
307
.
23.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.
24.
Schmid
,
P. J.
,
Meyer
,
K. E.
, and
Pust
,
O.
,
2009
, “
Dynamic Mode Decomposition and Proper Orthogonal Decomposition of Flow in a Lid-Driven Cylindrical Cavity
,”
8th Int. Symp. Part. Image Velocim.—PIV09
,
Melbourne, Australia
,
Aug. 25–28
, No. 3, pp.
1
4
.
25.
Higham
,
J. E.
,
Brevis
,
W.
, and
Keylock
,
C. J.
,
2018
, “
Implications of the Selection of a Particular Modal Decomposition Technique for the Analysis of Shallow Flows
,”
J. Hydraul. Res.
,
1686
, pp.
1
10
.
26.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
.
27.
Roy
,
S.
,
Hua
,
J. C.
,
Barnhill
,
W.
,
Gunaratne
,
G. H.
, and
Gord
,
J. R.
,
2015
, “
Deconvolution of Reacting-Flow Dynamics Using Proper Orthogonal and Dynamic Mode Decompositions
,”
Phys. Rev. E—Stat. Nonlinear Soft Matter Phys.
,
91
(
1
), pp.
1
16
.
28.
Hua
,
J. C.
,
Gunaratne
,
G. H.
,
Talley
,
D. G.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2016
, “
Dynamic-Mode Decomposition Based Analysis of Shear Coaxial Jets With and Without Transverse Acoustic Driving
,”
J. Fluid Mech.
,
790
, pp.
5
32
.
29.
Kutz
,
J. N.
,
Fu
,
X.
, and
Brunton
,
S. L.
,
2016
, “
Multiresolution Dynamic Mode Decomposition
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
2
), pp.
713
735
.
30.
Brunton
,
S. L.
,
Nathan Kutz
,
J.
,
Proctor
,
J. L.
, and
Brunton
,
B. W.
,
2016
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
31.
Kutz
,
J. N.
,
Fu
,
X.
,
Brunton
,
S. L.
, and
Erichson
,
N. B.
,
2015
, “
Multi-Resolution Dynamic Mode Decomposition
for
Foreground/Background Separation and Object Tracking
,”
Proc. IEEE Int. Conf. Comput. Vis.
,
Santiago, Chile
,
February
, pp.
921
929
.
32.
Klus
,
S.
,
Nüske
,
F.
,
Peitz
,
S.
,
Niemann
,
J. H.
,
Clementi
,
C.
, and
Schütte
,
C.
,
2020
, “
Data-Driven Approximation of the Koopman Generator: Model Reduction, System Identification, and Control
,”
Phys. D Nonlinear Phenom.
,
406
, pp.
1
32
.
33.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering
,
Cambridge University Press
,
Cambridge, UK
.
34.
Manohar
,
K.
,
Kaiser
,
E.
,
Brunton
,
S. L.
, and
Nathan Kutz
,
J.
,
2019
, “
Optimized Sampling for Multiscale Dynamics
,”
Multiscale Model. Simul.
,
17
(
1
), pp.
117
136
.
35.
Geikie
,
M. K.
, and
Ahmed
,
K. A.
,
2018
, “
Pressure-Gradient Tailoring Effects on the Turbulent Flame-Vortex Dynamics of Bluff-Body Premixed Flames
,”
Combust. Flame
,
197
, pp.
227
242
.
36.
Dylewsky
,
D.
,
Tao
,
M.
, and
Kutz
,
J. N.
,
2019
, “
Dynamic Mode Decomposition for Multiscale Nonlinear Physics
,”
Phys. Rev. E
,
99
(
6
), pp.
1
11
.
37.
Kutz
,
J. N.
,
Brunton
,
S.
, and
Fu
,
X.
,
2015
, “
Multi-Resolution Analysis of Dynamical Systems Using Dynamic Mode Decomposition
,”
Lect. Notes Eng. Comput. Sci.
,
2217
, pp.
90
93
.
38.
Arbabi
,
H.
, and
Mezić
,
I.
,
2017
, “
Study of Dynamics in Post-Transient Flows Using Koopman Mode Decomposition
,”
Phys. Rev. Fluids
,
2
(
12
), p.
124402
.
39.
Mezić
,
I.
,
2013
, “
Analysis of Fluid Flows via Spectral Properties of the Koopman Operator
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
357
378
.
40.
Bagheri
,
S.
,
2013
, “
Koopman-Mode Decomposition of the Cylinder Wake
,”
J. Fluid Mech.
,
726
, pp.
596
623
.
41.
Mccuan
,
J.
,
1997
, “
Retardation of Plateau-Rayleigh Instability: A Distinguishing Characteristic among Perfectly Wetting Fluids
,”
1
, pp.
1
6
.
arXiv:math/9701214
. https://arxiv.org/abs/9701214
42.
Eggers
,
J.
,
1997
, “
Nonlinear Dynamics and Breakup of Free-Surface Flows
,”
Rev. Mod. Phys.
,
69
(
1833
), pp.
865
929
.
43.
Papageorgiou
,
D. T.
,
1995
, “
On the Breakup of Viscous Liquid Threads
,”
Phys. Fluids
7
(
7
), pp.
1529
1544
.
44.
Ng
,
C. L.
,
Sankarakrishnan
,
R.
, and
Sallam
,
K. A.
,
2008
, “
Bag Breakup of Nonturbulent Liquid Jets in Crossflow
,”
Int. J. Multiphase Flow
,
34
(
3
), pp.
241
259
.
You do not currently have access to this content.