Abstract

A wind turbine blade has the particularity of containing twisted and tapered thick airfoils. The challenge with this configuration is the highly separated flow in the region of high twist. This research presents a numerical investigation of the effectiveness of a vortex trapping cavity (VTC) on the aerodynamics of the National Renewable Energy Laboratory phase VI wind turbine. First, simulations are conducted on the S809 profile to study the fluid flow compared to the airfoil with the redesigned VTC. Second, the blade is simulated with and without VTC to assess its effect on the torque and the flow patterns. The results show that for high angles of incidence at Rec = 106, the lift coefficient increases by 10% and the wake region appears smaller for the case with VTC. For wind speeds larger than 10 m/s, the VTC improves the torque by 3.9%. This is due to the separation that takes place in the vicinity of the VTC and leads to trapping early separation eddies inside the cell. These eddies roll up forming a coherent laminar vortex structure, which in turn sheds periodically out of the cell. This phenomenon favorably reshapes excessive flow separation, reenergizes the boundary layer, and globally improves blade torque.

References

1.
Porté-Agel
,
F.
,
Bastankhah
,
M.
, and
Shamsoddin
,
S.
,
2020
, “
Wind-Turbine and Wind-Farm Flows: A Review
,”
Boundary-Layer Meteorology
,
174
, pp.
1
59
.
2.
Luhur
,
M. R.
,
Manganhar
,
A. L.
,
Solangi
,
K. H.
,
Jakhrani
,
A. Q.
,
Mukwana
,
K. C.
, and
Samo
,
S. R.
,
2016
, “
A Review of the State-of-the-Art in Aerodynamic Performance of Horizontal Axis Wind Turbine
,”
Wind Struct. Int. J.
,
22
(
1
), pp.
1
16
.
3.
Rehman
,
S.
,
Alam
,
M. M.
,
Alhems
,
L. M.
, and
Mujahid Rafique
,
M.
,
2018
, “
Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement: A Review
,”
Energies
,
11
(
3
), p.
506
.
4.
Jensen
,
M. F.
, and
Branner
,
K.
,
2013
,
Adv. Wind Turbine Blade Des. Mater.
,
Woodhead Publishing
,
Sawston
, pp.
3
28
.
5.
Timmer
,
W. A.
, and
Van Rooij
,
R.
,
2001
, “
Some Aspects of High Angle-of-Attack Flow on Airfoils for Wind Turbine Application
,”
EWEC 2001
,
Copenhagen, Denmark
,
July 2015
.
6.
Wata
,
J.
,
Faizal
,
M.
,
Talu
,
B.
,
Vanawalu
,
L.
,
Sotia
,
P.
, and
Rafiuddin Ahmed
,
M.
,
2011
, “
Studies on a Low Reynolds Number Airfoil for Small Wind Turbine Applications
,”
Sci. China Technol. Sci.
,
54
(
7
), pp.
1684
1688
.
7.
Tangier
,
J. L.
, and
Somers
,
D. M.
,
1984
, “
NREL Airfoil Families for HAWTs
,”
January
.
8.
Giguere
,
P.
, and
Selig
,
M. S.
,
1999
, “
Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor
,” NREL/SR-500-26173.
9.
Simms
,
D.
,
Schreck
,
S.
,
Hand
,
M.
, and
Fingersh
,
L. J.
,
2001
, “
NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements
,” Nrel/Tp-500-29494,
June
.
10.
Fingersh
,
L. J.
,
Sinuns
,
D.
,
Hand
,
M.
,
Jager
,
D.
,
Cotrell
,
J.
,
Robinson
,
M.
,
Schreck
,
S.
, and
Larwood
,
S.
,
2001
, “
Wind Tunnel Testing of NREL'S Unsteady Aerodynamics Experiment
,”
2001 ASME Wind Energy Symposium
,
Reno, NV
,
Jan. 8–11
.
11.
Jonkman
,
J. M.
,
2003
, “
Modeling of the UAE Wind Turbine for Refinement of FAST _ AD
,” Contract No.,
December
.
12.
Somers
,
D. M.
,
1997
, “
Design and Experimental Results for the S809 Airfoil
,” Nrel/Sr-440-6918,
January
, pp.
1
104
. https://www.nrel.gov/docs/legosti/old/6918.pdf
13.
Ramsay
,
R. R.
,
Janiszewska
,
J. M.
, and
Gregorek
,
G. M.
,
1996
, “
Wind Tunnel Testing of Three S809 Aileron Configurations for Use on Horizontal Axis Wind Turbines: Airfoil Performance Report
,” NREL Rept. DE-AC36-83CH10093,
July
. http://scholar.google.com/scholar?hl=en&btnG=Search& q=intitle:Wind+Tunnel+Testing+of+Three+S809+Aileron+Configurations+for +use+on+Horizontal+Axis+Wind+Turbines#0
14.
Salle
,
S. A. D. L.
,
Reardon
,
D.
,
Leithead
,
W. E.
, and
Grimble
,
M. J.
,
1990
, “
Review of Wind Turbine Control
,”
Int. J. Control
,
52
(
6
), pp.
1295
1310
.
15.
Controlled, Pitch, Wind Turbines, and Stall Controlled
,
2009
, “
Power Control of Wind Turbines Power Control of Wind Turbines Power Control of Wind Turbines
,”
Control 2007 (Nov. 26)
, pp.
1
2
. http://drømstørre.dk/wp-content/wind/miller/windpower web/en/tour/wtrb/powerreg.htm
16.
Kaya
,
M. N.
,
Köse
,
F.
,
Uzol
,
O.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2021
, “
Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
091301
.
17.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
18.
Pechlivanoglou
,
G.
,
2012
, “
Passive and Active Flow Control Solutions for Wind Turbine Blades
,” PhD thesis, Technische Universität Berlin, Berlin.
19.
Bukala
,
J.
,
Damaziak
,
K.
,
Kroszczynski
,
K.
,
Krzeszowiec
,
M.
, and
Malachowski
,
J.
,
2015
, “
Investigation of Parameters Influencing the Efficiency of Small Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
146
, pp.
29
38
.
20.
Moshfeghi
,
M.
,
Shams
,
S.
, and
Hur
,
N.
,
2017
, “
Aerodynamic Performance Enhancement Analysis of Horizontal Axis Wind Turbines Using a Passive Flow Control Method Via Split Blade
,”
J. Wind Eng. Ind. Aerodyn.
,
167
, pp.
148
159
.
21.
Wang
,
H.
,
Zhang
,
B.
,
Qiu
,
Q.
, and
Xu
,
X.
,
2017
, “
Flow Control on the NREL S809 Wind Turbine Airfoil Using Vortex Generators
,”
Energy
,
118
(
January
), pp.
1210
1221
.
22.
Ebrahimi
,
A.
, and
Movahhedi
,
M.
,
2018
, “
Wind Turbine Power Improvement Utilizing Passive Flow Control With Microtab
,”
Energy
,
150
, pp.
575
582
.
23.
Liu
,
Y.
,
Li
,
P.
,
He
,
W.
, and
Jiang
,
K.
,
2020
, “
Numerical Study of the Effect of Surface Grooves on the Aerodynamic Performance of a NACA 4415 Airfoil for Small Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
206
(
January
), p.
104263
.
24.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051214
.
25.
Rafiuddin
,
A. M.
, and
Nabolaniwaqa
,
E.
,
2019
, “
Performance Studies on a Wind Turbine Blade Section for Low Wind Speeds With a Gurney Flap
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111202
.
26.
Abate
,
G.
,
Mavris
,
D. N.
, and
Sankar
,
L. N.
,
2019
, “
Performance Effects of Leading Edge Tubercles on the NREL Phase VI Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051206
.
27.
Elsayed
,
O.
,
Omar
,
A. A.
,
Jeddi
,
A.
,
Saad EL
,
H. E. S. S. N. I.
, and
Hachimy
,
F. Z.
,
2021
, “
Drag Reduction by Application of Different Shape Designs in a Sport Utility Vehicle
,”
Int. J. Autom. Mech. Eng.
,
18
(
3
), pp.
8870
8881
.
28.
Ringleb
,
F. O.
,
1961
,
Boundary Layer and Flow Control
, Vol.
1
,
G. V.
Lachmann
, ed.,
Pergamon Press
,
Oxford
, pp.
265
294
.
29.
Kasper
,
W. A.
,
1975
, “
Some Ideas of Vortex Lift
,” SAE Technical Papers.
30.
Savitsky
,
A.
,
Schukin
,
L.
, and
Kareljn
,
V.
,
1995
,
Patent US5417391A
.
31.
Kruppa
,
E. W.
,
1977
, “
A Wind Tunnel Investigation of the Kasper Vortex Concept
,”
13th annual meeting and technical display incorporating the forum on the future of air transportation
,
Washington, DC
,
Jan. 10–13
.
32.
Gregorio
,
F. D.
, and
Fraioli
,
G.
,
2008
, “
Flow Control on a High Thickness Airfoil by a Trapped Vortex Cavity
,”
14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 7–10
.
33.
Chernyshenko
,
S. I.
,
Galletti
,
B.
,
Iollo
,
A.
, and
Zannetti
,
L.
,
2003
, “
Trapped Vortices and a Favourable Pressure Gradient
,”
J. Fluid Mech.
,
482
(
482
), pp.
235
255
.
34.
Salleh
,
M. B.
,
Kamaruddin
,
N. M.
, and
Mohamed-Kassim
,
Z.
,
2018
, “
A Qualitative Study of Vortex Trapping Capability for Lift Enhancement on Unconventional Wing
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
370
(
1
), p.
012054
.
35.
Shahid
,
A. B.
, and
Mashud
,
M.
,
2017
, “
Experimental and Numerical Study of Control of Flow Separation of a Symmetric Airfoil With Trapped Vortex Cavity
,”
7th BSME International Conference on Thermal Engineering
,
Dhaka, Bangladesh
,
Dec. 22–24
.
36.
Shi
,
S.
,
New
,
T. H.
, and
Liu
,
Y.
,
2014
, “
On the Flow Behaviour of a Vortex-Trapping Cavity NACA0020 Aerofoil at Ultra-Low Reynolds Number
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, No. 2008
,
Lisbon, Portugal
,
July 7–10
, pp.
1
12
.
37.
Olsman
,
W. F. J.
, and
Colonius
,
T.
,
2011
, “
Numerical Simulation of Flow Over an Airfoil With a Cavity
,”
AIAA J.
,
49
(
1
), pp.
143
149
.
38.
Fatehi
,
M.
,
Nili-Ahmadabadi
,
M.
,
Nematollahi
,
O.
,
Minaiean
,
A.
, and
Kim
,
K. C.
,
2019
, “
Aerodynamic Performance Improvement of Wind Turbine Blade by Cavity Shape Optimization
,”
Renew. Energy
,
132
, pp.
773
785
.
39.
Nili-Ahmadabadi
,
M.
,
Nematollahi
,
O.
,
Fatehi
,
M.
,
Cho
,
D. S.
, and
Kim
,
K. C.
,
2020
, “
Evaluation of Aerodynamic Performance Enhancement of Risø_B1 Airfoil With an Optimized Cavity by PIV Measurement
,”
J. Vis.
,
23
(
4
), pp.
591
603
.
40.
Vuddagiri
,
A.
,
Halder
,
P.
,
Samad
,
A.
, and
Chaudhuri
,
A.
,
2016
, “
Flow Analysis of Airfoil Having Different Cavities on Its Suction Surface
,”
Prog. Comput. Fluid Dyn.
,
16
(
2
), pp.
67
77
.
41.
Aksenov
,
A.
,
Ozturk
,
U.
,
Yu
,
P. C.
,
Soganci
,
B. S.
, and
Tutkun
,
O.
,
2017
, “
A Validation Study Using NREL Phase VI Experiments, Part I: Low Computational Resource Scenario
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017
,
Stockholm
,
Apr. 3–7
, pp.
1
12
.
42.
Chao
,
D. D.
, and
Van Dam
,
C. P.
,
2007
, “
Computational Aerodynamic Analysis of a Blunt Trailing-Edge Airfoil Modification to the NREL Phase VI Rotor
,”
Wind Energy
,
10
(
6
), pp.
529
550
.
43.
Mahu
,
R.
,
Popescu
,
F.
,
Frunzulicǎ
,
F.
, and
Dumitrache
,
A.
,
2011
, “
3D CFD Modeling and Simulation of NREL Phase VI Rotor
,”
Numerical Analysis and Applied Mathematics ICNAAM 2011
,
Halkidiki
,
Sept. 19–25
, pp.
1520
1523
.
44.
Song
,
Y.
,
2014
, “
ScholarWorks @ UMass Amherst CFD Simulation of the Flow Around NREL Phase VI Wind Turbine
,” Thesis,
Graduate School of the University of Massachusetts Amherst
,
August
.
45.
Song
,
Y.
, and
Perot
,
J. B.
,
2015
, “
CFD Simulation of the NREL Phase VI Rotor
,”
Wind Eng.
,
39
(
3
), pp.
299
310
.
46.
Moshfeghi
,
M.
,
Song
,
Y. J.
, and
Xie
,
Y. H.
,
2012
, “
Effects of Near-Wall Grid Spacing on SST-kω Model Using NREL Phase VI Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
94
105
.
47.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche aérospatiale
,
1
, pp.
5
21
.
48.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
49.
Jamal
,
T.
, and
Keith Walters
,
D.
,
2018
, “IMECE2017-70599”, pp.
1
13
.
50.
Wilcox
,
D. C.
,
1986
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(
11
), pp.
1311
1320
.
51.
He
,
Y.
, and
Agarwal
,
R. K.
,
2014
, “
Shape Optimization of NREL S809 Airfoil for Wind Turbine Blades Using a Multi-Objective Genetic Algorithm
,”
Int. J. Aerosp. Eng.
,
2014
, pp.
1
13
.
52.
Asli
,
M.
,
Gholamali
,
B. M.
, and
Tousi
,
A. M.
,
2015
, “
Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance With Leading Edge Bump
,”
Math. Probl. Eng.
,
2015
, pp.
1
8
.
53.
Douvi
,
E. C.
, and
Margaris
,
D. P.
,
2012
, “
Aerodynamic Characteristics of S809 vs. NACA 0012 Airfoil for Wind Turbine Applications
,”
5th International Conference from Scientific Computing to Computational Engineering
,
Athens, Greece
,
July 4–7
.
54.
Mostafa
,
W.
,
Abdelsamie
,
A.
,
Mohamed
,
M.
,
Thévenin
,
D.
, and
Sedrak
,
M.
,
2020
, “
Aerodynamic Performance Improvement Using a Micro-Cylinder as a Passive Flow Control Around the S809 Airfoil
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
973
(
1
), p.
012040
.
55.
Qaissi
,
K.
,
Elsayed
,
O.
,
Faqir
,
M.
, and
Essadiqi
,
E.
,
2021
, “
A Validation Study of the Aerodynamic Behaviour of the NREL Phase VI Wind Turbine: Three-Dimensional Rotational Case
,”
CFD Lett.
,
13
(
9
), pp.
1
12
.
You do not currently have access to this content.