Abstract

It has been frequently hypothesized that there is an “effective immobile layer” attached at the solid–liquid interface to represent the hindering effect because of the complicated composition on the flow of crude oil in nanopores. Nevertheless, the resulting viscosity discontinuity is physically problematic, and the effect of viscosity transition was not incorporated. In this paper, based on the reduced form of the continuous viscosity profile, the numerical and analytical models for reduced velocity profiles (quantifying the magnitude and the shape) and the reduced pore radius (the ratio of equivalent and actual pore radii) are obtained and compared with each other, respectively. The reduced pore radius establishes a link between the “effective immobile-layer” simplification and the viscosity transition. Detailed sensitivity analysis is conducted to study the impact of viscosity transition (indicated by the curvature constant and the viscosity ratio) on the reduced viscosity profile, reduced velocity profiles, and the reduced pore radius, separately. Results show the microscale flow patterns that cannot be reflected by the existing body of methodology. This work is important for understanding the flow characteristics of crude oil in shale and tight rocks, where nanopores are dominating and the effect of the interfacial viscosity transition can be significant.

References

1.
Kou
,
Z.
, and
Dejam
,
M.
,
2019
, “
Dispersion Due to Combined Pressure-Driven and Electro-Osmotic Flows in a Channel Surrounded by a Permeable Porous Medium
,”
Phys. Fluids
,
31
(
5
), p.
056603
.
2.
Dejam
,
M.
,
Hassanzadeh
,
H.
, and
Chen
,
Z.
,
2014
, “
Shear Dispersion in a Fracture With Porous Walls
,”
Adv. Water Resour.
,
74
, pp.
14
25
.
3.
Kou
,
Z.
, and
Dejam
,
M.
,
2020
, “
Control of Shear Dispersion by the Permeable Porous Wall of a Capillary Tube
,”
Chem. Eng. Technol.
,
43
(
11
), pp.
2208
2214
.
4.
He
,
L.
,
Mei
,
H.
,
Hu
,
X.
,
Dejam
,
M.
,
Kou
,
Z.
, and
Zhang
,
M.
,
2019
, “
Advanced Flowing Material Balance to Determine Original Gas in Place of Shale Gas Considering Adsorption Hysteresis
,”
SPE Reserv. Eval. Eng.
,
22
(
4
), pp.
1
11
.
5.
Zhang
,
L.
,
Kou
,
Z.
,
Wang
,
H.
,
Zhao
,
Y.
,
Dejam
,
M.
,
Guo
,
J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-Wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Pet. Sci. Eng.
,
166
, pp.
104
120
.
6.
Wang
,
X.
, and
Sheng
,
J. J.
,
2017
, “
Effect of Low-Velocity Non-Darcy Flow on Well Production Performance in Shale and Tight Oil Reservoirs
,”
Fuel
,
190
, pp.
41
46
.
7.
Huang
,
S.
,
Yao
,
Y.
,
Zhang
,
S.
,
Ji
,
J.
, and
Ma
,
R.
,
2018
, “
A Fractal Model for Oil Transport in Tight Porous Media
,”
Transp. Porous Media
,
121
(
3
), pp.
725
739
.
8.
Xiong
,
W.
,
Lei
,
Q.
,
Gao
,
S.
,
Hu
,
Z.
, and
Xue
,
H.
,
2009
, “
Pseudo Threshold Pressure Gradient to Flow for Low Permeability Reservoirs
,”
Pet. Explor. Dev.
,
36
(
2
), pp.
232
236
.
9.
Wang
,
F.
,
Liu
,
Z.
,
Cai
,
J.
, and
Gao
,
J.
,
2018
, “
A Fractal Model for Low-Velocity Non-Darcy Flow in Tight Oil Reservoirs Considering Boundary-Layer Effect
,”
Fractals
,
26
(
5
), pp.
1850077
.
10.
Lei
,
H.
,
He
,
L.
,
Li
,
R.
,
Hu
,
Z.
, and
He
,
J.
,
2019
, “
Effects of Boundary Layer and Stress Sensitivity on the Performance of Low-Velocity and One-Phase Flow in a Shale Oil Reservoir: Experimental and Numerical Modeling Approaches
,”
J. Pet. Sci. Eng.
,
180
, pp.
186
196
.
11.
Xiong
,
Y.
,
Yu
,
J.
,
Sun
,
H.
,
Yuan
,
J.
,
Huang
,
Z.
, and
Wu
,
Y.-s.
,
2017
, “
A New Non-Darcy Flow Model for Low-Velocity Multiphase Flow in Tight Reservoirs
,”
Transp. Porous Media
,
117
(
3
), pp.
367
383
.
12.
Chen
,
M.
,
Cheng
,
L.
,
Wang
,
X.
,
Lyu
,
C.
, and
Cao
,
R.
,
2019
, “
Pore Network Modelling of Fluid Flow in Tight Formations Considering Boundary Layer Effect and Media Deformation
,”
J. Pet. Sci. Eng.
,
180
, pp.
643
659
.
13.
Wang
,
D.
,
Cheng
,
L.
,
Cao
,
R.
,
Jia
,
P.
,
Fang
,
S.
,
Rao
,
X.
,
Wu
,
Y.
, and
Dai
,
D.
,
2019
, “
The Effects of the Boundary Layer and Fracture Networks on the Water Huff-n-Puff Process of Tight Oil Reservoirs
,”
J. Pet. Sci. Eng.
,
176
, pp.
466
480
.
14.
Cao
,
R.
,
Wang
,
Y.
,
Cheng
,
L.
,
Ma
,
Y. Z.
,
Tian
,
X.
, and
An
,
N.
,
2016
, “
A New Model for Determining the Effective Permeability of Tight Formation
,”
Transp. Porous Media
,
112
(
1
), pp.
21
37
.
15.
Zhang
,
Y.
,
Zeng
,
J.
,
Cai
,
J.
,
Feng
,
S.
,
Feng
,
X.
, and
Qiao
,
J.
,
2019
, “
A Mathematical Model for Determining Oil Migration Characteristics in Low-Permeability Porous Media Based on Fractal Theory
,”
Transp. Porous Media.
,
129
(
3
), pp.
633
652
.
16.
Fang
,
W.
,
Jiang
,
H.
,
Li
,
J.
,
Wang
,
Q.
,
Killough
,
J.
,
Li
,
L.
,
Peng
,
Y.
, and
Yang
,
H.
,
2017
, “
A Numerical Simulation Model for Multi-Scale Flow in Tight Oil Reservoirs
,”
Pet. Explor. Dev.
,
44
(
3
), pp.
446
453
.
17.
Shiqian
,
X.
,
Yuyao
,
L.
,
Yu
,
Z.
,
Sen
,
W.
, and
Qihong
,
F.
,
2020
, “
A History Matching Framework to Characterize Fracture Network and Reservoir Properties in Tight Oil
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042902
.
18.
Fu
,
S.
, and
Wang
,
G.
,
2019
, “
Experimental Simulation on Imbibition of the Residual Fracturing Fluid in Tight Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082905
.
19.
Hou
,
X.
,
Zhang
,
X.
, and
Guo
,
B.
,
2019
, “
Mathematical Modeling of Fluid Flow to Unconventional Oil Wells With Radial Fractures and Its Testing With Field Data
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070702
.
20.
Wang
,
S.
,
Feng
,
Q.
,
Zha
,
M.
,
Lu
,
S.
,
Qin
,
Y.
,
Xia
,
T.
, and
Zhang
,
C.
,
2015
, “
Molecular Dynamics Simulation of Liquid Alkane Occurrence State in Pores and Slits of Shale Organic Matter
,”
Pet. Explor. Dev.
,
42
(
6
), pp.
844
851
.
21.
Sanaei
,
A.
,
Ma
,
Y.
, and
Jamili
,
A.
,
2019
, “
Nanopore Confinement and Pore Connectivity Considerations in Modeling Unconventional Resources
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012904
.
22.
Myers
,
T. G.
,
2011
, “
Why Are Slip Lengths so Large in Carbon Nanotubes?
,”
Microfluid. Nanofluidics
,
10
(
5
), pp.
1141
1145
.
23.
Wu
,
K.
,
Chen
,
Z.
,
Li
,
J.
,
Li
,
X.
,
Xu
,
J.
, and
Dong
,
X.
,
2017
, “
Wettability Effect on Nanoconfined Water Flow
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
13
), pp.
3358
3363
.
24.
Mattia
,
D.
, and
Calabrò
,
F.
,
2012
, “
Explaining High Flow Rate of Water in Carbon Nanotubes via Solid-Liquid Molecular Interactions
,”
Microfluid. Nanofluidics
,
13
(
1
), pp.
125
130
.
25.
Ritos
,
K.
,
Mattia
,
D.
,
Calabrò
,
F.
, and
Reese
,
J. M.
,
2014
, “
Flow Enhancement in Nanotubes of Different Materials and Lengths
,”
J. Chem. Phys.
,
140
(
1
), p.
014702
.
26.
Calabrò
,
F.
,
Lee
,
K. P.
, and
Mattia
,
D.
,
2013
, “
Modelling Flow Enhancement in Nanochannels: Viscosity and Slippage
,”
Appl. Math. Lett.
,
26
(
10
), pp.
991
994
.
27.
He
,
Y.
,
Tsutsui
,
M.
,
Miao
,
X. S.
, and
Taniguchi
,
M.
,
2015
, “
Impact of Water-Depletion Layer on Transport in Hydrophobic Nanochannels
,”
Anal. Chem.
,
87
(
24
), pp.
12040
12050
.
28.
Cui
,
J.
,
Sang
,
Q.
,
Li
,
Y.
,
Yin
,
C.
,
Li
,
Y.
, and
Dong
,
M.
,
2017
, “
Liquid Permeability of Organic Nanopores in Shale: Calculation and Analysis
,”
Fuel
,
202
, pp.
426
434
.
29.
Zhang
,
Q.
,
Su
,
Y.
,
Wang
,
W.
,
Lu
,
M.
, and
Sheng
,
G.
,
2017
, “
Apparent Permeability for Liquid Transport in Nanopores of Shale Reservoirs: Coupling Flow Enhancement and Near Wall Flow
,”
Int. J. Heat Mass Transf.
,
115
, pp.
224
234
.
30.
Wang
,
Q.
, and
Cheng
,
Z.
,
2019
, “
A Fractal Model of Water Transport in Shale Reservoirs
,”
Chem. Eng. Sci.
,
198
, pp.
62
73
.
31.
Cui
,
J.
, and
Cheng
,
L.
,
2017
, “
A Theoretical Study of the Occurrence State of Shale Oil Based on the Pore Sizes of Mixed Gaussian Distribution
,”
Fuel
,
206
, pp.
564
571
.
32.
Zhang
,
T.
,
Li
,
X.
,
Yin
,
Y.
,
He
,
M.
,
Liu
,
Q.
,
Huang
,
L.
, and
Shi
,
J.
,
2019
, “
The Transport Behaviors of Oil in Nanopores and Nanoporous Media of Shale
,”
Fuel
,
242
, pp.
305
315
.
33.
Wang
,
H.
,
Su
,
Y.
,
Zhao
,
Z.
,
Wang
,
W.
,
Sheng
,
G.
, and
Zhan
,
S.
,
2019
, “
Apparent Permeability Model for Shale Oil Transport Through Elliptic Nanopores Considering Wall-Oil Interaction
,”
J. Pet. Sci. Eng.
,
176
, pp.
1041
1052
.
34.
Wang
,
H.
,
Su
,
Y.
,
Wang
,
W.
,
Sheng
,
G.
,
Li
,
H.
, and
Zafar
,
A.
,
2019
, “
Enhanced Water Flow and Apparent Viscosity Model Considering Wettability and Shape Effects
,”
Fuel
,
253
, pp.
1351
1360
.
35.
Yang
,
Y.
,
Wang
,
K.
,
Zhang
,
L.
,
Sun
,
H.
,
Zhang
,
K.
, and
Ma
,
J.
,
2019
, “
Pore-Scale Simulation of Shale Oil Flow Based on Pore Network Model
,”
Fuel
,
251
, pp.
683
692
.
36.
Sun
,
Z.
,
Wu
,
K.
,
Shi
,
J.
,
Zhang
,
T.
,
Feng
,
D.
,
Huang
,
L.
, and
Li
,
X.
,
2019
, “
An Analytical Model for Transport Capacity of Water Confined in Nanopores
,”
Int. J. Heat Mass Transf.
,
138
, pp.
620
630
.
37.
Zhao
,
J.
,
Kang
,
Q.
,
Yao
,
J.
,
Zhang
,
L.
,
Li
,
Z.
,
Yang
,
Y.
, and
Sun
,
H.
,
2018
, “
Lattice Boltzmann Simulation of Liquid Flow in Nanoporous Media
,”
Int. J. Heat Mass Transf.
,
125
, pp.
1131
1143
.
38.
Zhang
,
T.
,
Li
,
X.
,
Shi
,
J.
,
Sun
,
Z.
,
Yin
,
Y.
,
Wu
,
K.
,
Li
,
J.
, and
Feng
,
D.
,
2018
, “
An Apparent Liquid Permeability Model of Dual-Wettability Nanoporous Media: A Case Study of Shale
,”
Chem. Eng. Sci.
,
187
, pp.
280
291
.
39.
Wang
,
S.
,
Feng
,
Q.
,
Javadpour
,
F.
,
Xia
,
T.
, and
Li
,
Z.
,
2015
, “
Oil Adsorption in Shale Nanopores and Its Effect on Recoverable Oil-in-Place
,”
Int. J. Coal Geol.
,
147–148
, pp.
9
24
.
40.
Blake
,
T. D.
,
1990
, “
Slip Between a Liquid and a Solid: D.M. Tolstoi’s (1952) Theory Reconsidered
,”
Colloids Surf.
,
47
(
C
), pp.
135
145
.
41.
Javadpour
,
F.
,
Mcclure
,
M.
, and
Naraghi
,
M. E.
,
2015
, “
Slip-Corrected Liquid Permeability and Its Effect on Hydraulic Fracturing and Fluid Loss in Shale
,”
Fuel
,
160
, pp.
549
559
.
You do not currently have access to this content.