Abstract

Drilling fluid is considered the backbone of drilling operations in the oil and gas industry to unlock hydrocarbon from subterranean formations. Maintaining the drilling fluid properties, for example, flow properties such as rheology, plastic viscosity (PV), yield point (YP), gel strength (GS), and circulation loss, is the challenge for fluid/mud engineers to carry out successful drilling operations. A variety of chemicals have been added to improve the drilling fluid properties by introducing new chemicals or optimizing the existing chemicals without affecting the other essential fluid properties. The present study for the first time employs the eco-innovation concept to explore the utilization of steelmaking industry waste, i.e., silicomanganese fume (SMF), as a bridging material. The objective of this article is to design an eco-friendly framework that comprehensively explains and utilizes SMF as a bridging material in water-based fluid (WBF). The eco-innovation/eco-friendly framework includes the steps required for processing and understanding the new material and evaluating its effects on flow and the bridging properties of WBF. A scanning electron microscope (SEM), X-ray fluorescence (XRF), and particle size distribution (PSD) were used to understand the physicochemical properties of SMF. The flow properties were studied using a Fann rheometer before and after hot rolling at 120 °F. A high-pressure high-temperature (HPHT) filter press equipment was used to investigate the bridging capability of seepage losses following conditions of 190 °F and 300 psi differential pressure. Minimal cleaning and disintegration with a mortar and pestle are enough to prepare SMF to be incorporated in drilling fluid. The SEM and XRF results showed that SMF contains oxides of manganese, silicon, potassium, calcium, and magnesium, while the PSD revealed a natural bimodal distribution with an average grain size of D50 of around 29 μm. SMF showed a noticeable and measurable enhancement of flow properties and bridging capability in WBF. The SMF-based WBF showed improved rheological properties, plastic viscosity, and yield point compared with marble-based WBF. Adding SMF to WBF with and without marble showed a ten-fold superior plugging performance compared with marble-based WBF using 20-μm ceramic discs. The findings revealed the successful utilization of SMF in WBF by improving the rheology, plastic viscosity, yield point, and bridging capability.

References

1.
Dewick
,
P.
,
Maytorena-Sanchez
,
E.
, and
Winch
,
G.
,
2019
, “
Regulation and Regenerative Eco-Innovation: The Case of Extracted Materials in the UK
,”
Ecol. Econ.
,
160
, pp.
38
51
.
2.
Najamuddin
,
S. K.
,
Johari
,
M. A. M.
,
Maslehuddin
,
M.
, and
Yusuf
,
M. O.
,
2019
, “
Synthesis of Low Temperature Cured Alkaline Activated Silicomanganese Fume Mortar
,”
Constr. Build. Mater.
,
200
, pp.
387
397
.
3.
Gao
,
J.
,
Sha
,
A.
,
Wang
,
Z.
,
Tong
,
Z.
, and
Liu
,
Z.
,
2017
, “
Utilization of Steel Slag as Aggregate in Asphalt Mixtures for Microwave Deicing
,”
J. Cleaner Prod.
,
152
, pp.
429
442
.
4.
Frias
,
M.
,
de Rojas
,
M. S.
,
Menendez
,
I.
,
de Lomas
,
M. G.
, and
Rodriguez
,
C.
,
2005
, “
Properties of SiMn Slag as a Pozzolanic Material in Portland Cement Manufacture
,”
Mater. Constr.
,
55
(
280
), pp.
53
62
.
5.
T.
Chakravarty
and
S.
Panigrahi
,
1996
, “
Strategies for Solid Waste Management in SAIL Steel Plants
,” Proceedings: NS-EWM, pp.
52
62
.
6.
Oge
,
M.
,
Ozkan
,
D.
,
Celik
,
M. B.
,
Sabri Gok
,
M.
, and
Cahit Karaoglanli
,
A.
,
2019
, “
An Overview of Utilization of Blast Furnace and Steelmaking Slag in Various Applications
,”
Mater. Today: Proc.
,
11
, pp.
516
525
.
7.
Magzoub
,
M. I.
,
Ibrahim
,
M. H.
,
Nasser
,
M. S.
,
El-Naas
,
M. H.
, and
Amani
,
M.
,
2020
, “
Utilization of Steel-Making Dust in Drilling Fluids Formulations
,”
Processes
,
8
(
5
).
8.
Odion
,
A. J.
,
2019
, “
Formulation of Water Based Drilling Fluid Using Local Mud Uwheru & Otor-Udu Clay
,”
Paper Presented at the SPE Nigeria Annual International Conference and Exhibition
,
Lagos, Nigeria
,
Aug. 5−7
, Paper No. SPE-198737-MS.
9.
Caenn
,
R.
,
Darley
,
H. C.
, and
Gray
,
G. R.
,
2017
,
Composition and Properties of Drilling and Completion Fluids
, 7th ed.,
Gulf Professional Publishing
,
Houston, TX
.
10.
Xie
,
B.
,
Zhang
,
X.
,
Li
,
Y.
,
Liu
,
W.
, and
Luo
,
M.
,
2019
, “
Application a Novel Thermo-Sensitive Copolymer as a Potential Rheological Modifier for Deepwater Water-Based Drilling Fluids
,”
Colloids Surf., A
,
581
, p.
123848
.
11.
Akpan
,
E. U.
,
Enyi
,
G. C.
,
Nasr
,
G.
,
Yahaya
,
A. A.
,
Ahmadu
,
A. A.
, and
Saidu
,
B.
,
2019
, “
Water-Based Drilling Fluids for High-Temperature Applications and Water-Sensitive and Dispersible Shale Formations
,”
J. Pet. Sci. Eng.
,
175
, pp.
1028
1038
.
12.
Al-Hameedi
,
A. T. T.
,
Alkinani
,
H. H.
,
Dunn-Norman
,
S.
,
Alashwak
,
N. A.
,
Alshammari
,
A. F.
,
Alkhamis
,
M. M.
,
Mutar
,
R. A.
, and
Ashammarey
,
A.
,
2019b
, “
Evaluation of Environmentally Friendly Drilling Fluid Additives in Water-Based Drilling Mud
,”
Paper Presented at the SPE Europec Featured at 81st EAGE Conference and Exhibition
,
London, UK
,
June 3–6
, Paper No. SPE-195510-MS.
13.
Alkhalaf
,
S.
,
Alawami
,
M.
,
Wagle
,
V.
, and
Al-Yami
,
A.
,
2019
, “
Less Damaging Drilling Fluids: Development and Lab Testing
,”
Paper Presented at the International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
, Paper No. IPTC-19205-MS.
14.
Xiao
,
H.
,
Liu
,
S.
,
Chen
,
Y.
,
Han
,
D.
, and
Wang
,
D.
,
2017
, “
Impacts of Polypropylene Glycol (PPG) Additive and pH on Tribological Properties of Water-Based Drilling Mud for Steel-Steel Contact
,”
Tribol. Int.
,
110
, pp.
318
325
.
15.
Elkatatny
,
S.
,
2019
, “
Assessing the Effect of Micronized Starch on Rheological and Filtration Properties of Water-Based Drilling Fluid
,”
Paper Presented at the SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 18–21
, Paper No. SPE-194965-MS.
16.
Ezeakacha
,
C. P.
,
Salehi
,
S.
, and
Kiran
,
R.
,
2018
, “
Lost Circulation and Filter Cake Evolution: Impact of Dynamic Wellbore Conditions and Wellbore Strengthening Implications
,”
J. Pet. Sci. Eng.
,
171
, pp.
1326
1337
.
17.
Murtaza
,
M.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Kamal
,
M. S.
, and
Al-Shehri
,
D.
,
2021
, “
Anhydrite (Calcium Sulfate) Mineral as a Novel Weighting Material in Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
023002
.
18.
Al-Hameedi
,
A. T. T.
,
Alkinani
,
H. H.
,
Dunn-Norman
,
S.
,
Al-Alwani
,
M. A.
,
Alshammari
,
A. F.
,
Albazzaz
,
H. W.
,
Alkhamis
,
M. M.
,
Alashwak
,
N. F.
, and
Mutar
,
R. A.
,
2019a
, “
Insights Into the Application of New Eco-Friendly Drilling Fluid Additive to Improve the Fluid Properties in Water-Based Drilling Fluid Systems
,”
J. Pet. Sci. Eng.
,
183
, p.
106424
.
19.
Kazemi-Beydokhti
,
A.
, and
Hajiabadi
,
S. H.
,
2018
, “
Rheological Investigation of Smart Polymer/Carbon Nanotube Complex on Properties of Water-Based Drilling Fluids
,”
Colloids Surf., A
,
556
, pp.
23
29
.
20.
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Filter Cake Properties of Water-Based Drilling Fluids Under Static and Dynamic Conditions Using Computed Tomography Scan
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042201
.
21.
Luo
,
Z.
,
Pei
,
J.
,
Wang
,
L.
,
Yu
,
P.
, and
Chen
,
Z.
,
2017
, “
Influence of an Ionic Liquid on Rheological and Filtration Properties of Water-Based Drilling Fluids at High Temperatures
,”
Appl. Clay Sci.
,
136
, pp.
96
102
.
22.
Gul
,
S.
,
Erge
,
O.
, and
van Oort
,
E.
,
2020
, “
Frictional Pressure Losses of Non-Newtonian Fluids in Helical Pipes: Applications for Automated Rheology Measurements
,”
J. Nat. Gas Sci. Eng.
,
73
, p.
103042
.
23.
Pakdaman
,
E.
,
Osfouri
,
S.
,
Azin
,
R.
,
Niknam
,
K.
, and
Roohi
,
A.
,
2019
, “
Improving the Rheology, Lubricity, and Differential Sticking Properties of Water-Based Drilling Muds at High Temperatures Using Hydrophilic Gilsonite Nanoparticles
,”
Colloids Surf., A
,
582
, p.
123930
.
24.
Majid
,
N. F. F.
,
Katende
,
A.
,
Ismail
,
I.
,
Sagala
,
F.
,
Sharif
,
N. M.
, and
Yunus
,
M. A. C.
,
2019
, “
A Comprehensive Investigation on the Performance of Durian Rind as a Lost Circulation Material in Water Based Drilling Mud
,”
Petroleum
,
5
(
3
), pp.
285
294
.
25.
Alawad
,
M. N.
, and
Fattah
,
K. A.
,
2019
, “
Superior Fracture-Seal Material Using Crushed Date Palm Seeds for Oil and Gas Well Drilling Operations
,”
J. King Saud Univ. Eng. Sci.
,
31
(
1
), pp.
97
103
.
26.
Yearwood
,
J.
,
Boissier
,
J. C.
, and
Viddick
,
B.
,
1988
, “
A New Technique for Solving Lost Circulation Problems and Zone Plugging
,”
Annual Technical Meeting
,
Calgary, Alberta
,
June 12–16
, Paper No. PETSOC-88-39-105.
27.
Feng
,
Y.
, and
Gray
,
K. E.
,
2018
,
Lost Circulation and Wellbore Strengthening
,
Springer
,
New York
.
28.
Canson
,
B. E.
,
1985
, “
Lost Circulation Treatments for Naturally Fractured, Vugular, or Cavernous Formations
,”
Paper Presented at the SPE/IADC Drilling Conference
,
New Orleans, LA
,
Mar. 5–8
, Paper No. SPE-13440-MS.
29.
Nayberg
,
T. M.
, and
Petty
,
B. R.
,
1986
, “
Laboratory Study of Lost Circulation Materials for Use in Oil-Base Drilling Muds
,”
Paper Presented at the SPE Deep Drilling and Production Symposium
,
Amarillo, TX
,
Apr. 6–8
, Paper No. SPE-14995-MS.
30.
Abdulrazzaq
,
W.
,
Alburaikan
,
R.
,
Savari
,
S.
, and
Whitfill
,
D. L.
,
2017
, “
New Methodology to Evaluate the Performance of Chemical Sealant Loss Circulation Materials
,”
Paper Presented at the SPE Kuwait Oil and Gas Show and Conference
,
Kuwait City, Kuwait
,
Oct. 15–18
, Paper No. SPE-187598-MS.
31.
Ramasamy
,
J.
, and
Amanullah
,
M.
,
2017
, “
Two Component Lost Circulation Material for Controlling Seepage to Moderate Losses
,”
Paper Presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
, Paper No. SPE-188101-MS.
32.
Yang
,
M.
,
Li
,
M. C.
,
Wu
,
Q.
,
Growcock
,
F. B.
, and
Chen
,
Y.
,
2020
, “
Experimental Study of the Impact of Filter Cakes on the Evaluation of LCMs for Improved Lost Circulation Preventive Treatments
,”
J. Pet. Sci. Eng.
,
191
, p.
107152
.
33.
Nayberg
,
T. M.
,
1987
, “
Laboratory Study of Lost Circulation Materials for Use in Both Oil-Based and Water-Based Drilling Muds
,”
SPE Drill. Completion
,
2
(
3
), pp.
229
236
.
34.
Messenger
,
J. U.
, and
McNiel
,
J. S.
, Jr
,
1952
, “
Lost Circulation Corrective: Time-Setting Clay Cement
,”
J. Pet. Technol.
,
4
(
3
), pp.
59
64
.
35.
Silent
,
R. A.
,
1936
, “
Circulation Losses
,”
Presented at the Drilling and Production Practice
,
New York
,
Jan. 1
, Paper No. API-36-060, https://www.onepetro.org/conference-paper/API-36-060.
36.
Adewole
,
J. K.
, and
Najimu
,
M. O.
,
2018
, “
A Study on the Effects of Date Pit-Based Additive on the Performance of Water-Based Drilling Fluid
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052903
.
37.
Al-Hameedi
,
A. T. T.
,
Alkinani
,
H. H.
,
Alkhamis
,
M. M.
, and
Dunn-Norman
,
S.
,
2020
, “
Utilizing Food Waste Product (Date Tree Seeds) to Enhance the Filtration Characteristics in Water-Based Drilling Fluid System: A Comparative Study
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
123201
.
38.
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2020
, “
Improving Class G Cement Carbonation Resistance for Applications of Geologic Carbon Sequestration Using Synthetic Polypropylene Fiber
,”
J. Nat. Gas Sci. Eng.
,
76
, p.
103184
.
39.
Nasir
,
M.
,
Johari
,
M. A. M.
,
Maslehuddin
,
M.
, and
Yusuf
,
M. O.
,
2020
, “
Sulfuric Acid Resistance of Alkali/Slag Activated Silico-Manganese Fume-Based Mortars
,”
Struct. Concr.
,
22
(
S1
), pp.
E400
E414
.
40.
Khan
,
M. A.
,
Wabaidur
,
S. M.
,
Siddiqui
,
M. R.
,
Alqadami
,
A. A.
, and
Khan
,
A. H.
,
2020
, “
Silico-Manganese Fumes Waste Encapsulated Cryogenic Alginate Beads for Aqueous Environment De-Colorization
,”
J. Cleaner Prod.
,
244
, p.
118867
.
41.
Jeennakorn
,
M.
,
Nygaard
,
R.
,
Nes
,
O. M.
, and
Saasen
,
A.
,
2017
, “
Testing Conditions Make a Difference When Testing LCM
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
375
386
.
42.
Razavi
,
O.
,
Vajargah
,
A. K.
,
van Oort
,
E.
,
Aldin
,
M.
, and
Govindarajan
,
S.
,
2016
, “
Optimum Particle Size Distribution Design for Lost Circulation Control and Wellbore Strengthening
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
836
850
.
43.
He
,
W.
,
Hayatdavoudi
,
A.
,
Chen
,
K.
,
Sawant
,
K.
,
Zhang
,
Q.
, and
Zhang
,
C.
,
2019
, “
Enhancement of Plastering Effect on Strengthening Wellbore by Optimizing Particle Size Distribution of Wellbore Strengthening Materials
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122905
.
44.
Oseh
,
J. O.
,
Norddin
,
M. M.
,
Ismail
,
I.
,
Gbadamosi
,
A. O.
,
Agi
,
A.
, and
Mohammed
,
H. N.
,
2019
, “
A Novel Approach to Enhance Rheological and Filtration Properties of Water-Based Mud Using Polypropylene–Silica Nanocomposite
,”
J. Pet. Sci. Eng.
,
181
, p.
106264
.
45.
Wang
,
Z.
,
Wu
,
Y.
,
Luo
,
P.
,
Tian
,
Y.
,
Lin
,
Y.
, and
Guo
,
Q.
,
2018
, “
Poly (Sodium p-Styrene Sulfonate) Modified Fe3O4 Nanoparticles as Effective Additives in Water-Based Drilling Fluids
,”
J. Pet. Sci. Eng.
,
165
, pp.
786
797
.
46.
Elkatatny
,
S.
,
Al Moajil
,
A. M.
, and
Nasr-El-Din
,
H. A.
,
2012
, “
Evaluation of a New Environmentally Friendly Treatment to Remove Mn3O4 Filter Cake
,”
Paper Presented at the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Tianjin, China
,
July 9–11
, Paper No. SPE-156451-MS.
47.
American Petroleum Institute (API). API RP 13B-1
,
2009
, “
Recommended Practice for Field Testing Water-Based Drilling Fluids
,”
American Petroleum Institute
,
Washington, DC
.
You do not currently have access to this content.