Abstract

Researchers have investigated reactivity-controlled compression ignition (RCCI) combustion in the past several years because of its excellent combustion, performance, and emission features. In this experimental study, the RCCI combustion strategy was investigated using mineral diesel/butanol fuel-pair at various premixed ratios (rp) on an energy basis (rp = 0.25, 0.50, and 0.75) at varying engine loads (BMEP = 1, 2, 3, and 4 bars) vis-à-vis baseline compression ignition (CI) combustion (rp = 0.0) strategy. Experiments were performed at constant engine speed (1500 rpm) in a single-cylinder research engine equipped with state-of-the-art features. The outcome of the investigation showed that port injection of Butanol as low reactivity fuel (LRF) improved the combustion and yielded superior engine performance than baseline CI combustion strategy. Engine exhaust emissions exhibited significantly lower nitrogen (NOx) oxides with butanol RCCI combustion strategy than baseline CI combustion strategy. Increasing rp of butanol showed improved combustion and emission characteristics; however, performance characteristics were not affected significantly. Particulate characteristics of the RCCI combustion strategy also showed a significant reduction in particle number concentration than baseline CI combustion. Slightly different combustion, performance, and emission characteristics of mineral diesel/ butanol-fueled RCCI combustion strategy compared to other test fuels such as mineral diesel/methanol, and mineral diesel/ethanol-fueled RCCI combustion strategy was an interesting observation of this study. Overall, this study indicated that butanol could be used as LRF in RCCI combustion engines to achieve superior combustion and emission characteristics.

References

1.
Peters
,
A.
,
Wichmann
,
H. E.
,
Tuch
,
T.
,
Heinrich
,
J.
, and
Heyder
,
J.
,
1997
, “
Respiratory Effects Are Associated With the Number of Ultrafine Particles
,”
Am. J. Respir. Crit. Care Med.
,
155
(
4
), pp.
1376
1383
.
2.
Kittelson
,
D.
,
1998
, “
Engine and Nanoparticles: A Review
,”
J. Aerosol Sci.
,
29
(
5/6
), pp.
575
588
.
3.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Gupta
,
T.
,
Agarwal
,
R. A.
,
Sharma
,
N.
,
Rajput
,
P.
,
Pandey
,
S. K.
, and
Ateeq
,
B.
,
2018
, “
Mutagenicity and Cytotoxicity of Particulate Matter Emitted From Biodiesel-Fueled Engines
,”
Environ. Sci. Technol.
,
52
(
24
), pp.
14496
14507
.
4.
Agarwal
,
A. K.
,
Ateeq
,
B.
,
Gupta
,
T.
,
Singh
,
A. P.
,
Pandey
,
S. K.
,
Sharma
,
N.
,
Agarwal
,
A. R.
,
Gupta
,
N. K.
,
Sharma
,
H.
,
Jain
,
A.
, and
Shukla
,
P. C.
,
2018
, “
Toxicity and Mutagenicity of Exhaust From Compressed Natural Gas: Could This be a Clean Solution for Megacities With Mixed-Traffic Conditions?
Environ. Pollut.
,
239
, pp.
499
511
.
5.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Gupta
,
T.
,
Agarwal
,
R. A.
,
Sharma
,
N.
,
Pandey
,
S. K.
, and
Ateeq
,
B.
,
2020
, “
Toxicity of Exhaust Particulates and Gaseous Emissions From Gasohol (Ethanol Blended Gasoline)-Fuelled Spark Ignition Engines
,”
Environ. Sci. Process. Impacts
,
22
(
7
), pp.
1540
1553
.
6.
Shukla
,
P. C.
,
Gupta
,
T.
,
Labhasetwar
,
N. K.
,
Khobaragade
,
R.
,
Gupta
,
N. K.
, and
Agarwal
,
A. K.
,
2017
, “
Effectiveness of Non-Noble Metal Based Diesel Oxidation Catalysts on Particle Number Emissions From Diesel and Biodiesel Exhaust
,”
Sci. Total Environ.
,
574
, pp.
1512
1520
.
7.
Johnson
,
T. V.
,
2009
, “
Review of Diesel Emissions and Control
,”
Int. J. Engine Res.
,
10
(
5
), pp.
275
285
.
8.
Resitoglu
,
I. A.
,
Altinisik
,
K.
,
Keskin
,
A.
,
Yildirimcan
,
S.
,
Ocakoglu
,
K.
, and
Omar
,
M. A.
,
2017
, “
Development of Fe2O3 Based Catalysts to Control Pollutant Emissions in Diesel Engines
,”
Fuel
,
208
, pp.
111
116
.
9.
Bykowski
,
B. B.
,
1989
,
Southwest Research Institute (SwRI), Engine Exhaust After-Treatment Device
, U.S. Patent 4,813,231.
10.
Watanabe
,
T.
,
Kawashima
,
K.
,
Tagawa
,
Y.
,
Tashiro
,
K.
,
Anoda
,
H.
,
Ichioka
,
K.
,
Sumiya
,
S.
, and
Zhang
,
G.
,
2007
, New DOC for Light Duty Diesel DPF System, SAE Technical Paper 2007-01-1920.
11.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Maurya
,
R. K.
,
2017
, “
Evolution, Challenges and Path Forward for low Temperature Combustion Engines
,”
Progress Energy Combust. Sci.
,
61
, pp.
1
56
.
12.
Singh
,
A. P.
,
Kumar
,
V.
, and
Agarwal
,
A. K.
,
2020
, “
Evaluation of Comparative Engine Combustion, Performance and Emission Characteristics of Low Temperature Combustion (PCCI and RCCI) Modes
,”
Appl. Energy
,
278
, p.
115644
.
13.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2012
, “
Combustion Characteristics of Diesel HCCI Engine: An Experimental Investigation Using External Mixture Formation Technique
,”
Appl. Energy
,
99
, pp.
116
125
.
14.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Lukose
,
J.
, and
Gupta
,
T.
,
2013
, “
Characterization of Exhaust Particulates From Diesel Fuelled Homogenous Charge Compression Ignition Combustion Engine
,”
J. Aerosol Sci.
,
58
, pp.
71
85
.
15.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Experimental Evaluation of Sensitivity of Low-Temperature Combustion to Intake Charge Temperature and Fuel Properties
,”
Int. J. Engine Res.
,
19
(
7
), pp.
732
757
.
16.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
, and
Agarwal
,
A. K.
,
2020
, “
Experimental Investigations of Mineral Diesel/Methanol-Fueled Reactivity Controlled Compression Ignition Engine Operated at Variable Engine Loads and Premixed Ratios
,”
Int. J. Engine Res.
17.
Singh
,
A. P.
,
Sharma
,
N.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Premixed Ratio on Mineral Diesel-Methanol Fueled Reactivity Controlled Compression Ignition Mode Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122301
.
18.
Mobasheri
,
R.
, and
Seddiq
,
M.
,
2018
, Effects of Diesel Injection Parameters in a Heavy Duty Iso-Butanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine, SAE Technical Paper 2018-01-0197.
19.
Hanson
,
R.
,
Ickes
,
A.
, and
Wallner
,
T.
,
2016
, Comparison of RCCI Operation With and Without EGR Over the Full Operating Map of a Heavy-Duty Diesel Engine, SAE Technical Paper 2016-01-0794.
20.
Splitter
,
D.
,
Wissink
,
M.
,
DelVescovo
,
D.
, and
Reitz
,
R.
,
2014
, “
Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency
,”
SAE Int. J. Engines
,
7
(
2
), pp.
913
927
.
21.
Zou
,
X.
,
Wang
,
H.
,
Zheng
,
Z.
,
Reitz
,
R.
, and
Yao
,
M.
,
2016
, Numerical Study of the RCCI Combustion Processes Fuelled With Methanol, Ethanol, n-Butanol and Diesel, SAE Technical Paper 2016-01-0777.
22.
Zheng
,
Z.
,
Xia
,
M.
,
Liu
,
H.
,
Shang
,
R.
,
Ma
,
G.
, and
Yao
,
M.
,
2018
, “
Experimental Study on Combustion and Emissions of n-Butanol/Biodiesel Under Both Blended Fuel Mode and Dual Fuel RCCI Mode
,”
Fuel
,
226
, pp.
240
251
.
23.
Soloiu
,
V.
,
Moncada
,
J. D.
,
Gaubert
,
R.
,
Knowles
,
A.
,
Molina
,
G.
,
Ilie
,
M.
,
Harp
,
S.
, and
Wiley
,
J. T.
,
2018
, “
Reactivity Controlled Compression Ignition Combustion and Emissions Using n-Butanol and Methyl Oleate
,”
Energy
,
165
, pp.
911
924
.
24.
Pan
,
S.
,
Liu
,
X.
,
Cai
,
K.
,
Li
,
X.
,
Han
,
W.
, and
Li
,
B.
,
2020
, “
Experimental Study on Combustion and Emission Characteristics of iso-Butanol/Diesel and Gasoline/Diesel RCCI in a Heavy-Duty Engine Under Low Loads
,”
Fuel
,
261
, p.
116434
.
25.
Engine Exhaust Particle Sizer Spectrometer Model 3090, Operation and Service Manual, TSI; March 2009.
26.
Singh
,
A. P.
,
Pal
,
A.
,
Gupta
,
N. K.
, and
Agarwal
,
A. K.
,
2017
, “
Particulate Emissions From Laser Ignited and Spark Ignited Hydrogen Fueled Engines
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15956
15965
.
27.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Book Company
,
New York
.
28.
Automotive Vehicles−Exhaust Emissions−Gaseous Pollutants from Vehicles Fitted With Compression Ignition Engines−Method of Measurement; Indian Standard IS 14273; Bureau of Indian Standards, New Delhi, India, 1999.
You do not currently have access to this content.