Abstract

Drilling fluids are designed carefully to yield filter cakes with good performance. Fine-scale assessments have revealed that the filter cake has two distinct layers: an internal layer that is close to the surface and an external layer that is close to the drilling fluid. Polymer additives have been used as lost circulation materials. They provide the means to bridge spaces in the rock in order to minimize the fluid invasion and formation damage. The performance of the polymer-based filter cake changes under harsh, high-temperature subsurface conditions. It is difficult to extract the polymer layer while maintaining its integrity so that it can be used in experimental assessments. Molecular simulation offers an alternative means of performing a thorough evaluation of the polymer layer at high temperatures. In this study, three common polymer additives, starch, carboxymethyl cellulose (CMC), and sodium polyacrylate (SPA), were re-created on a computational platform. The structures were subjected to a thorough analysis to extract various characteristics such as their mechanical strengths and interactions with the drilling fluid base (i.e., water). The results revealed that the three polymers maintain reasonable integrity at temperatures up to 400 K (starch and SPA) and 350 K (CMC). The yield strength of the starch decreased from 0.37 GPa to 0.21 GPa as the temperature increased from 300 K to 450 K, while it decreased from 0.66 to 0.38 for the SPA at the same range of temperature. The toughness of the starch and polyacrylate decreased by half within this temperature range. The temperature had a more pronounced impact on the stability of the CMC structure. Considering three polymers with different chemical characteristics allowed to show that the integrity of a polymer is linked to its molecular structure. The findings reported in this paper cast additional light on high-temperature polymer additive performance. The framework established in this study can be applied to other additives to support optimized drilling operations.

References

1.
International Energy Agency
,
2021
,
Global Energy Investment is set to Rebound by Around 10% in 2021, Reversing Most of the Drop Caused by the Pandemic
.
3.
Parizad
,
A.
,
Shahbazi
,
K.
, and
Tanha
,
A. A.
,
2018
, “
SiO2 Nanoparticle and KCl Salt Effects on Filtration and Thixotropical Behavior of Polymeric Water Based Drilling Fluid: With Zeta Potential and Size Analysis
,”
Results Phys.
,
9
, pp.
1656
1665
.
4.
Hossain
,
M. E.
, and
Al-Majed
,
A.
,
2015
,
Fundamentals of Sustainable Drilling Engineering
,
John Wiley & Sons,
Hoboken, NJ
.
5.
Nandurdikar
,
N. S.
,
Takach
,
N. E.
, and
Miska
,
S. Z.
,
2002
, “
Chemically Improved Filter Cakes for Drilling Wells
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
223
230
.
6.
Penny
,
G.
,
Pursley
,
J. T.
, and
Holcomb
,
D.
,
2005
, “
Microemulsion Additives Enable Optimized Formation Damage Repair and Prevention
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
233
239
.
7.
Abdo
,
J.
, and
Haneef
,
M. D.
,
2012
, “
Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
014501
.
8.
Mansoor
,
H. H. A.
,
Devarapu
,
S. R.
,
Samuel
,
R.
,
Sharma
,
T.
, and
Ponmani
,
S.
,
2021
, “
Experimental Investigation of Aloe-Vera-Based CuO Nanofluid as a Novel Additive in Improving the Rheological and Filtration Properties of Water-Based Drilling Fluid
,”
SPE Drill. Complet.
,
36
(
3
), pp.
542
551
.
9.
Horton
,
R. L.
,
Tresco
,
K. O.
,
Dobson
,
J. W.
,
Bye
,
G. K.
,
Knox
,
D. A.
,
Svoboda
,
C. F.
,
Foxenberg
,
W. E.
, and
Green
,
T. C.
,
2004
, “
A New Biopolymer-Free, Low-Solids, High-Density Reservoir Drilling Fluid: Laboratory Development and Field Implementation
,”
SPE Drill. Complet.
,
19
(
1
), pp.
29
39
.
10.
Deville
,
J. P.
,
Fritz
,
B.
, and
Jarrett
,
M.
,
2011
, “
Development of Water-Based Drilling Fluids Customized for Shale Reservoirs
,”
SPE Drill. Complet.
,
26
(
4
), pp.
484
491
.
11.
Ibrahim
,
A. F.
,
Al-Mujalhem
,
M. Q.
,
Nasr-El-Din
,
H. A.
, and
Al-Bagoury
,
M.
,
2020
, “
Evaluation of Formation Damage of Oil-Based Drilling Fluids Weighted With Micronized Ilmenite or Micronized Barite
,”
SPE Drill. Complet.
,
35
(
3
), pp.
402
413
.
12.
Basfar
,
S.
,
Mohamed
,
A.
, and
Elkatatny
,
S.
,
2020
, “
Barite−Micromax Mixture, An Enhanced Weighting Agent for the Elimination of Barite Sag in Invert Emulsion Drilling Fluids
,”
Pet. Explor. Prod. Technol.
,
10
(
6
), pp.
2427
2435
.
13.
Mitchell
,
R. F.
, and
Miska
,
S. Z.
,
2011
,
Fundamentals of Drilling Engineering
,
Society of Petroleum Engineers
,
Richardson, TX
, p.
89
.
14.
Hoberock
,
L. L.
, and
Bratcher
,
G. J.
,
1998
, “
Dynamic Differential Pressure Effects on Drilling of Permeable Formations
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
118
123
.
15.
Khatib
,
Z. I.
,
1994
, “
Prediction of Formation Damage Due to Suspended Solids: Modeling Approach of Filter Cake Buildup in Injectors
,”
Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 25–28
.
16.
Ershaghi
,
I.
, and
Azari
,
M.
,
1980
, “
Modeling of Filter Cake Buildup Under Dynamic-Static Conditions
,”
SPE California Regional Meeting
,
Los Angeles, CA
,
Apr. 9–11
.
17.
Scheid
,
C. M.
,
Calcada
,
L. A.
,
Arajo
,
C. A.
,
Waldmann
,
A. T.
, and
Martins
,
A. L. A.
,
2010
, “
Theoretical and Experimental Analysis of Dynamic Filtration in Drilling Operations
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 10–12
.
18.
Mohamed
,
A.
,
Elkatatny
,
S.
, and
Al-Majed
,
A.
,
2020
, “
Removal of Calcium Carbonate Water-Based Filter Cake Using a Green Biodegradable Acid
,”
Sustainability
,
12
(
3
), p.
994
.
19.
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Filter Cake Properties of Water-Based Drilling Fluids Under Static and Dynamic Conditions Using Computed Tomography Scan
,”
ASME. J. Energy Resour. Technol.
,
135
(
4
), p.
042201
.
20.
Tien
,
C.
,
Bai
,
R.
, and
Ramarao
,
B. V.
,
1997
, “
Analysis of Cake Growth in Cake Filtration: Effect of Fine Particle Retention
,”
AIChE J.
,
43
(
1
), pp.
33
44
.
21.
Theliander
,
H.
, and
Fathi-Najafi
,
M.
,
1996
, “
Simulation of the Build-Up of a Filter Cake
,”
Filtr. Sep.
,
33
(
5
), pp.
417
421
.
22.
Jiao
,
D.
, and
Sharma
,
M. M.
,
1994
, “
Mechanism of Cake Buildup in Crossflow Filtration of Colloidal Suspensions
,”
J. Colloid Interface Sci.
,
162
(
2
), pp.
454
462
.
23.
Fathi-Najafi
,
M.
, and
Theliander
,
H.
,
1995
, “
Determination of Local Filtration Properties at Constant Pressure
,”
Sep. Technol.
,
5
(
3
), pp.
165
178
.
24.
Magzoub
,
M. I.
,
Salehi
,
S.
,
Hussein
,
I. A.
, and
Nasser
,
M. S.
,
2021
, “
Investigation of Filter Cake Evolution in Carbonate Formation Using Polymer-Based Drilling Fluid
,”
ACS Omega
,
6
(
9
), pp.
6231
6239
.
25.
Sacramento
,
R. N.
,
Yang
,
Y.
,
You
,
Z.
,
Waldmann
,
A.
,
Martins
,
A. L.
,
Vaz
,
A. S.
,
Zitha
,
P. L.
, and
Bedrikovetsky
,
P.
,
2015
, “
Deep Bed and Cake Filtration of Two-Size Particle Suspension in Porous Media
,”
J. Pet. Sci. Eng.
,
126
, pp.
201
210
.
26.
Cargnel
,
R.
, and
Luzardo
,
J.
,
1999
, “
In Particle Size Distribution Selection of CaCO3 in Drill-In Fluids: Theory and Applications
,”
Latin American and Caribbean Petroleum Engineering Conference
,
Caracas, Venezuela
,
Apr. 21
.
27.
Vryzas
,
Z.
, and
Kelessidis
,
V. C.
,
2017
, “
Nano-Based Drilling Fluids: A Review
,”
Energies
,
10
(
4
), p.
540
.
28.
Magzoub
,
M. I.
,
Salehi
,
S.
,
Hussein
,
I. A.
, and
Nasser
,
M. S.
,
2020
, “
Loss Circulation in Drilling and Well Construction: The Significance of Applications of Crosslinked Polymers in Wellbore Strengthening: A Review
,”
J. Pet. Sci. Eng.
,
185
, p.
106653
.
29.
Li
,
X.
,
Jiang
,
G.
,
Shen
,
X.
, and
Li
,
G.
,
2020
, “
Application of Tea Polyphenols as a Biodegradable Fluid Loss Additive and Study of the Filtration Mechanism
,”
ACS Omega
,
5
(
7
), pp.
3453
3461
.
30.
Gibson
,
J.
,
Javora
,
P. H.
, and
Adkins
,
M.
,
2011
, “
Pre-Cross-Linked Pills Provide Efficient and Consistent Fluid Loss Control
,”
SPE European Formation Damage Conference
,
Noordwijk, The Netherlands
,
June 7–10
,
SPE
.
31.
Lee
,
L.
, and
Dahi Taleghani
,
A.
,
2020
, “
Simulating Fracture Sealing by Granular LCM Particles in Geothermal Drilling
,”
Energies
,
13
(
18
), p.
4878
.
33.
Waldmann
,
M.
, and
Hagler
,
A. T.
,
1993
, “
New Combining Rules for Rare Gas van der Waals Parameters
,”
J. Comput. Chem.
,
14
(
9
), pp.
1077
1084
.
34.
Sun
,
H.
,
1998
, “
COMPASS: an ab Initio Force-Field Optimized for Condensed Phase Applications—Overview With Details on Alkane and Benzene Compounds
,”
Phys. Chem. B
,
102
(
38
), pp.
7338
7364
.
35.
Ungerer
,
P.
,
Rigby
,
D.
,
Leblanc
,
B.
, and
Yiannourakou
,
M.
,
2013
, “
Sensitivity of the Aggregation Behaviour of Asphaltenes to Molecular Weight and Structure Using Molecular Dynamics
,”
Mol. Simul.
,
40
(
1–3
), pp.
115
122
.
36.
Afagwu
,
C.
,
Al-Afnan
,
S.
,
Patil
,
S.
,
Aljaberi
,
J.
,
Mahmoud
,
M. A.
, and
Li
,
J.
,
2021
, “
The Impact of Pore Structure and Adsorption Behavior on Kerogen Tortuosity
,”
Fuel
,
303
, p.
121261
.
37.
Alafnan
,
S.
,
2021
, “
Petrophysics of Kerogens Based on Realistic Structures
,”
ACS Omega
,
6
(
14
), pp.
9549
9558
.
38.
Alafnan
,
S.
,
Solling
,
T.
, and
Mahmoud
,
M.
,
2020
, “
Effect of Kerogen Thermal Maturity on Methane Adsorption Capacity: A Molecular Modeling Approach
,”
Molecules
,
25
(
16
), p.
3764
.
39.
Alafnan
,
S.
,
Sultan
,
A. S.
, and
Aljaberi
,
J.
,
2020
, “
Molecular Fractionation in the Organic Materials of Source Rocks
,”
ACS Omega
,
5
(
30
), pp.
18968
18974
.
40.
Alafnan
,
S.
,
Falola
,
Y.
,
Al Mansour
,
O.
,
AlSamadony
,
K.
,
Awotunde
,
A.
, and
Aljawad
,
M.
,
2020
, “
Enhanced Recovery From Organic-Rich Shales Through Carbon Dioxide Injection: Molecular-Level Investigation
,”
Energy Fuels
,
34
(
12
), pp.
16089
16098
.
41.
Alqam
,
M. H.
,
Abu-Khamsin
,
S. A.
,
Alafnan
,
S. F.
,
Sultan
,
A. S.
,
Al-Majed
,
A.
, and
Okasha
,
T.
,
2021
, “
The Impact of Carbonated Water on Wettability: Combined Experimental and Molecular Simulation Approach
,”
SPE J.
,
27
(
2
), pp.
1
13
.
42.
Aljaberi
,
J.
,
Alafnan
,
S.
,
Glatz
,
G.
,
Sultan
,
A. S.
, and
Afagwu
,
C.
,
2020
, “
The Impact of Kerogen Tortuosity on Shale Permeability
,”
SPE J.
,
26
(
2
), pp.
765
779
.
43.
Bradford
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
,
22
(
4
), pp.
469
483
.
44.
Zhang
,
L.
, and
Greenfield
,
M. L.
,
2007
, “
Relaxation Time, Diffusion, and Viscosity Analysis of Model Asphalt Systems Using Molecular Simulation
,”
J. Chem. Phys.
,
127
(
19
), p.
194502
.
45.
Alafnan
,
S.
,
2021
, “
The Impact of Pore Structure on Kerogen Geomechanics
,”
Geofluids
,
2021
, pp.
1
12
.
46.
Agarwal
,
S.
,
Tran
,
P.
,
Soong
,
Y.
,
Martello
,
D.
, and
Gupta
,
R. K.
,
2011
, “
Flow Behaviour of Nanoparticle Stabilized Drilling Fluids and Effect on High Temperature Aging
,”
AADE National Technical Conference and Exhibition
,
Houston, TX, Apr. 12–14
, pp.
1
6
.
47.
Sepehri
,
S.
,
Soleyman
,
R.
,
Varamesh
,
A.
,
Valizadeh
,
M.
, and
Nasiri
,
A.
,
2018
, “
Effect of Synthetic Water-Soluble Polymers on the Properties of the Heavy Water-Based Drilling Fluid at High Pressure-High Temperature (HPHT) Conditions
,”
J. Pet. Sci. Eng.
,
166
, pp.
850
856
.
You do not currently have access to this content.