Abstract

To estimate production behaviors of inclined well in multilayer heterogeneous carbonate gas reservoir, two semi-analytical models for different formation distribution patterns are proposed, which are named as model I and model II. For model I, the inner region of each layer is fractured-vuggy porous medium, while the outer region only contains matrix. For model II, the inner and outer regions are consisted of matrix and fractured-vuggy porous mediums, respectively. To solve the model, Laplace transformation, Fourier transformation and inversion, Duhamel convolution, and Stehfest numerical inverse are applied. The validities of these models are verified through the comparisons with the published datum, which include well bottom-hole pressure (BHP) and gas production rate of individual layer for vertical and inclined wells in multilayer homogenous gas reservoir. Furthermore, by matching the well BHP data collected from a field case, the applicability of model is validated. The influences of prevailing factors, such as the radius ratio between inner and outer regions, horizontal–vertical permeability ratio, and inclination angle, on production behaviors are analyzed. The results show that influenced by the diverse formation distribution patterns, the variation of radius ratio between inner and outer regions has opposite effect on the well BHP for models I and II. Formation anisotropy and inclination angle have minimal effects on the well BHP of model I, but have significant impacts on model II. To keep the well BHP with a relatively high value, for model I and model II, the penetrate inclination angles should be greater than 50 deg and 55 deg, respectively.

References

1.
Méndez
,
J. N.
,
Jin
,
Q.
,
González
,
M.
,
Zhang
,
X.
,
Lobo
,
C.
,
Boateng
,
C. D.
, and
Zambrano
,
M.
,
2020
, “
Fracture Characterization and Modeling of Karsted Carbonate Reservoirs: A Case Study in Tahe Oilfield, Tarim Basin (Western China)
,”
Mar. Pet. Geol.
,
112
(
2
), pp.
1
17
.
2.
Tian
,
F.
,
Luo
,
X.
, and
Zhang
,
W.
,
2019
, “
Integrated Geological-Geophysical Characterizations of Deeply Buried Fractured-Vuggy Carbonate Reservoirs in Ordovician Strata, Tarim Basin
,”
Mar. Pet. Geol.
,
99
(
1
), pp.
292
309
.
3.
Wu
,
G.
,
Yang
,
H.
,
He
,
S.
,
Cao
,
S.
,
Liu
,
X.
, and
Jing
,
B.
,
2016
, “
Effects of Structural Segmentation and Faulting on Carbonate Reservoir Properties: A Case Study From the Central Uplift of the Tarim Basin, China
,”
Mar. Pet. Geol.
,
71
(
3
), pp.
183
197
.
4.
Prado
,
L. R.
, and
Da
,
G.
,
1987
, “
An Analytical Solution for Unsteady Liquid Flow in a Reservoir With a Uniformly Fractured Zone Around the Well
,”
SPE/DOE Low Permeability Reservoirs Symposium
,
Denver, CO
,
May 18–19
, pp.
35
47
.
5.
Olarewaju
,
J. S.
, and
Lee
,
W. J.
,
1987
, “
An Analytical Model for Composite Reservoirs Produced at Either Constant Bottomhole Pressure or Constant Rate
,”
62nd Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 27–30
, pp.
217
230
.
6.
Olarewaju
,
J. S.
, and
Lee
,
J. W.
,
1989
, “
A Comprehensive Application of a Composite Reservoir Model to Pressure-Transient Analysis
,”
SPE Reservoir Eng.
,
4
(
3
), pp.
325
331
.
7.
Kikani
,
J.
, and
Walkup
,
G. W.
, Jr.
,
1991
, “
Analysis of Pressure-Transient Tests for Composite Naturally Fractured Reservoirs
,”
SPE Form. Val.
,
6
(
2
), pp.
176
182
.
8.
Olarewaju
,
J. S.
, and
Lee
,
W. J.
,
1991
, “
Rate Behavior of Composite Dual-Porosity Reservoirs
,”
Production Operations Symposium
,
Oklahoma City, OK
,
Apr. 7–9
, pp.
655
672
.
9.
Satman
,
A.
,
1991
, “
Pressure-Transient Analysis of a Composite Naturally Fractured Reservoir
,”
SPE Form. Val
,
6
(
2
), pp.
169
175
.
10.
Turki
,
L.
,
Demski
,
J. A.
, and
Grader
,
A. S.
,
1989
, “
Decline Curve Analysis in Composite Reservoirs
,”
SPE Eastern Regional Meeting
,
Morgantown, WV
,
Oct. 24–27
, pp.
85
100
.
11.
Wang
,
H.
,
Ran
,
Q.
, and
Liao
,
X.
,
2017
, “
Pressure Transient Responses Study on the Hydraulic Volume Fracturing Vertical Well in Stress-Sensitive Tight Hydrocarbon Reservoirs
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18343
18349
.
12.
Zeng
,
H.
,
Fan
,
D.
,
Yao
,
J.
, and
Sun
,
H.
,
2015
, “
Pressure and Rate Transient Analysis of Composite Shale gas Reservoirs Considering Multiple Mechanisms
,”
J. Nat. Gas Sci. Eng
,
27
(
7
), pp.
914
925
.
13.
Zhao
,
Y. L.
,
Zhang
,
L. H.
,
Luo
,
J. X.
, and
Zhang
,
B. N.
,
2014
, “
Performance of Fractured Horizontal Well With Stimulated Reservoir Volume in Unconventional gas Reservoir
,”
J. Hydrol
,
512
(
10
), pp.
447
456
.
14.
Rana
,
S.
, and
Ertekin
,
T.
,
2012
, “
Type Curves for Pressure Transient Analysis of Composite Double-Porosity Gas Reservoirs
,”
SPE Western Regional Meeting
,
Bakersfield, CA
,
Mar. 19–23
, pp.
1
17
.
15.
Fan
,
D.
,
Yao
,
J.
,
Hai
,
S.
,
Hui
,
Z.
, and
Wei
,
W.
,
2015
, “
A Composite Model of Hydraulic Fractured Horizontal Well With Stimulated Reservoir Volume in Tight Oil and Gas Reservoir
,”
J. Nat. Gas Sci. Eng
,
24
(
3
), pp.
115
123
.
16.
Wu
,
M.
,
Ding
,
M.
,
Yao
,
J.
,
Xu
,
S.
,
Li
,
L.
, and
Li
,
X.
,
2018
, “
Pressure Transient Analysis of Multiple Fractured Horizontal Well in Composite Shale Gas Reservoirs by Boundary Element Method
,”
J. Pet. Sci. Eng.
,
162
(
3
), pp.
84
101
.
17.
Meng
,
F.
,
Lei
,
Q.
,
He
,
D.
,
Yan
,
H.
,
Jia
,
A.
,
Deng
,
H.
, and
Xu
,
W.
,
2018
, “
Production Performance Analysis for Deviated Wells in Composite Carbonate Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
56
(
8
), pp.
333
343
.
18.
Cobb
,
W. M.
,
Ramey
,
H. J.
, Jr.
, and
Miller
,
F. G.
,
1972
, “
Well-Test Analysis for Wells Producing Commingled Zones
,”
J. Petrol. Technol.
,
24
(
1
), pp.
27
37
.
19.
El-Banbi
,
A. H.
, and
Wattenbarger
,
R. A.
,
1996
, “
Analysis of Commingled Tight Gas Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 6–9
, pp.
545
555
.
20.
El-Banbi
,
A. H.
, and
Wattenbarger
,
R. A.
,
1997
, “
Analysis of Commingled Gas Reservoirs With Variable Bottom-Hole Flowing Pressure and Non-Darcy Flow
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 5–8
, pp.
229
241
.
21.
Kuchuk
,
F. J.
, and
Wilkinson
,
D. J.
,
1991
, “
Transient Pressure Behavior of Commingled Reservoirs
,”
SPE Form. Val.
,
6
(
1
), pp.
111
120
.
22.
Larsen
,
L.
,
1981
, “
Wells Producing Commingled Zones With Unequal Initial Pressures and Reservoir Properties
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 4–7
.
23.
Raghavan
,
R.
,
Topaloglu
,
H. N.
,
Cobb
,
W. M.
, and
Ramey
,
H. J.
, Jr.
,
1974
, “
Well-Test Analysis for Wells Producing From Two Commingled Zones of Unequal Thickness
,”
J. Petrol. Technol.
,
26
(
9
), pp.
1035
1043
.
24.
Vieira Bela
,
R.
,
Pesco
,
S.
, and
Barreto
,
A.
,
2019
, “
Modeling Falloff Tests in Multilayer Reservoirs
,”
J. Pet. Sci. Eng.
,
174
(
3
), pp.
161
168
.
25.
Larsen
,
L.
,
1999
, “
Determination of Pressure-Transient and Productivity Data for Deviated Wells in Layered Reservoirs
,”
SPE Reserv. Eval. Eng.
,
2
(
1
), pp.
95
103
.
26.
Larsen
,
L.
,
2000
, “
Pressure-Transient Behavior of Multibranched Wells in Layered Reservoirs
,”
SPE Reserv. Eval. Eng.
,
3
(
1
), pp.
68
73
.
27.
Jongkittinarukorn
,
K.
, and
Tiab
,
D.
,
1998
, “
Development of the Boundary Element Method for a Horizontal Well in Multilayer Reservoir
,”
SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium
,
Denver, CO
,
Apr. 5–8
, pp.
317
328
.
28.
Kuchuk
,
F. J.
, and
Habashy
,
T.
,
1996
, “
Pressure Behavior of Horizontal Wells in Multilayer Reservoirs With Crossflow
,”
SPE Form. Val.
,
11
(
1
), pp.
55
64
.
29.
Kuchuk
,
F. J.
, and
Saeedi
,
J.
,
1992
, “
Inflow Performance of Horizontal Wells in Multilayer Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Washington, DC
,
Oct. 4–7
, pp.
929
940
.
30.
Hazlett
,
R. D.
, and
Babu
,
D. K.
,
2012
, “
Discrete Wellbore and Fracture Modeling for Unconventional Wells and Unconventional Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
, pp.
1
21
.
31.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
32.
Meng
,
X.
, and
Wang
,
J.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
.
33.
Guo
,
J.
,
Meng
,
F.
,
Jia
,
A.
,
Dong
,
S.
,
Yan
,
H.
,
Zhang
,
H.
, and
Tong
,
G.
,
2020
, “
Production Behavior Evaluation on Multilayer Commingled Stress-Sensitive Carbonate Gas Reservoir
,”
Energy Explor. Exploit.
,
39
(
1
), pp.
86
107
.
34.
Meng
,
F.
,
He
,
D.
,
Yan
,
H.
,
Zhao
,
H.
,
Zhang
,
H.
, and
Li
,
C.
,
2021
, “
Production Performance Analysis for Slanted Well in Multilayer Commingled Carbonate Gas Reservoir
,”
J. Pet. Sci. Eng.
,
204
, pp.
1
12
.
35.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991
, “
New Solutions for Well-Test-Analysis Problems. Part 1—Analytical Considerations
,”
SPE Form. Val.
,
6
(
3
), pp.
359
368
.
36.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991
, “
New Solutions for Well-Test-Analysis Problems: Part 2-Computational Considerations and Applications
,”
SPE Form. Val.
,
6
(
3
), pp.
369
378
.
37.
Wang
,
H.
,
Zhang
,
L.
,
Guo
,
J.
,
Liu
,
Q.
, and
He
,
X.
,
2012
, “
An Efficient Algorithm to Compute Transient Pressure Responses of Slanted Wells With Arbitrary Inclination in Reservoirs
,”
Pet. Sci.
,
9
(
2
), pp.
212
222
.
38.
Spath
,
J. B.
,
Ozkan
,
E.
, and
Raghavan
,
R.
,
1994
, “
An Efficient Algorithm for Computation of Well Responses in Commingled Reservoirs
,”
SPE Form. Eval.
,
9
(
2
), pp.
115
121
.
39.
Schmittroth
,
L. A.
,
1960
, “
Numerical Inversion of Laplace Transforms
,”
Commun. ACM.
,
3
(
3
), pp.
171
173
.
40.
Wu
,
Y.-S.
,
Ehlig-Economides
,
C.
,
Qin
,
G.
,
Kang
,
Z.
,
Zhang
,
W.
,
Ajayi
,
B.
, and
Tao
,
Q.
,
2007
, “
A Triple-Continuum Pressure-Transient Model for a Naturally Fractured Vuggy Reservoir
,”
SPE Annual Technical Conference and Exhibition
,
Anaheim, CA
,
Nov. 11–14
, pp.
1
10
.
41.
Lee
,
A. L.
,
Gonzalez
,
M. H.
, and
Eakin
,
B. E.
,
1966
, “
The Viscosity of Natural Gases
,”
J. Petrol. Technol.
,
18
(
8
), pp.
997
1000
.
42.
Hall
,
K. R.
, and
Yarborough
,
L.
,
1973
, “
A new Equation of State for Z-Factor Calculations
,”
Oil Gas J.
,
71
(
7
), pp.
82
92
.
43.
Dranchuk
,
P. M.
,
Purvis
,
R. A.
, and
Robinson
,
D. B.
,
1973
, “
Computer Calculation of Natural Gas Compressibility Factors Using the Standing and Katz Correlation
,”
Annual Technical Meeting of the Petroleum Society of CIM
,
Edmonton, Alberta, Canada
,
May 7–11
, pp.
73
112
.
You do not currently have access to this content.